
Tina’s Random Number Generator Library

Version 4.5

Heiko Bauke

July 2, 2008

“The state of the art for generating uniform deviates
has advanced considerably in the last decade and
now begins to resemble a mature field.”

Press et al. [46]

Contents

1 TRNG in a nutshell 3
1.1 Introduction . 3
1.2 History . 4

2 Pseudo-random numbers for parallel Monte Carlo simulations 5
2.1 Pseudo-random numbers . 5
2.2 General parallelization techniques for PRNGs 5
2.3 Playing fair . 7
2.4 Linear feedback shift register sequences . 8

2.4.1 Parallelization of LFSR sequences . 9
2.4.2 Choice of modulus . 11

2.5 Non-linear transformations and YARN sequences 12

3 Basic concepts 15
3.1 Random number engines . 15
3.2 Random number distributions . 18

4 TRNG classes 21
4.1 Random number engines . 21

4.1.1 Linear congruential generators . 21
4.1.2 Multiple recursive generators . 25
4.1.3 YARN generators . 31
4.1.4 Lagged Fibonacci generators . 38

4.2 Random number distributions . 42
4.2.1 Uniform distributions . 42
4.2.2 Exponential distribution . 46
4.2.3 Normal distribution . 47
4.2.4 Cauchy distribution . 50
4.2.5 Logistic distribution . 51
4.2.6 Lognormal distribution . 53
4.2.7 Pareto distribution . 54
4.2.8 Power-law distribution . 55
4.2.9 Tent distribution . 57
4.2.10 Weibull distribution . 58
4.2.11 Extreme value distribution . 59
4.2.12 Γ-distribution . 60
4.2.13 χ2-distribution . 62
4.2.14 Student-t-distribution . 63
4.2.15 Snedecor-F-distribution . 64
4.2.16 Rayleigh distribution . 65

1

Contents

4.2.17 Bernoulli distribution . 66
4.2.18 Binomial distribution . 68
4.2.19 Geometric distribution . 70
4.2.20 Poisson distribution . 71
4.2.21 Discrete distribution . 72

4.3 Function template generate_canonical . 76

5 Installation 77

6 Examples 79
6.1 Hello world! . 79
6.2 Hello parallel world! . 81

6.2.1 Block splitting . 82
6.2.2 Leapfrog . 82
6.2.3 Block splitting or leapfrog? . 85

6.3 Using TRNG with STL and Boost . 89

7 Implementation details and efficiency 93
7.1 Efficient modular reduction . 93
7.2 Fast delinearization . 95
7.3 Performance . 95

8 Quality 97

9 Frequently asked questions 106

Bibliography 108

2

1 TRNG in a nutshell

1.1 Introduction

The Monte Carlo method is a widely used and commonly accepted simulation technique
in physics, operations research, artificial intelligence, and other fields, and pseudo-random
numbers (PRNs) are its key resource. All Monte Carlo simulations include some sort of
averaging independent samples, a calculation that is embarrassingly parallel. Hence it is no
surprise that more and more large scale simulations are run on parallel systems like networked
workstations or clusters. For each Monte Carlo simulation the quality of the PRN generator
(PRNG) is a crucial factor. In a parallel environment the quality of a PRNG is even more
important than in a non-parallel environment to some extent, because feasible sample sizes
are easily 10 . . . 104 times as large as on a sequential machine. The main problem is the
parallelization of the PRNG itself.

Application programmers and scientists need not to grapple with all the technical details of
pseudo-random number generation if a PRNG library is used. The following requirements are
frequently demanded from a library for (parallel) pseudo-random number generation:

• The library should provide a set of different interchangeable algorithms for pseudo-
random number generation.
• For each algorithm different well tested parameter sets should be provided that guarantee

a long period and good statistical properties.
• The internal state of a PRNG can be saved for later use and restored. This makes it

possible to stop a simulation and to carry on later.
• PRNGs have to support block splitting and leapfrog, see section 2.1.
• The library should provide methods for generating random variables with various

distributions, uniform and non-uniform.
• The library should be implemented in a portable, speed-optimized fashion.

If these are also your requirements for a PRNG library, you should go with Tina’s Random
Number Generator Library.

Tina’s Random Number Generator Library (TRNG) is a state of the art C++ pseudo-random
number generator library for sequential and parallel Monte Carlo simulations. Its design
principles are based on a proposal [5] for an extensible random number generator facility, that
will be part of the forthcoming revision of the ISO C++ standard. The TRNG library features
an object oriented design, is easy to use and has been speed optimized. Its implementation
does not depend on any communication library or hardware architecture. TRNG is suited for
shared memory as well as for distributed memory computers and may be used in any parallel
programming environment, e. g. Message Passing Standard or OpenMP. All generators, that
are implemented by TRNG, have been subjected to thorough statistical tests in sequential and
parallel setups, see also section 8.

This reference is organized as follows. In chapter 2 we present some basic techniques for

3

1 TRNG in a nutshell

parallel random number generation, chapter 3 introduces the basic concepts of TRNG, whereas
chapter 4 describes all classes of TRNG in detail. In chapter 5 we give installation instruc-
tions, and chapter 6 presents some example programs, that demonstrate the usage of TRNG
in sequential as well as in parallel Monte Carlo applications. Chapter 7 deals with some
implementation details and performance issues. We complete the TRNG reference with the
presentation of some statistical tests of the PRNGs of TRNG in chapter 8 and answer some
FAQs in chapter 9.

This manual can be read in several ways. You might read this manual chapter by chapter
from the beginning to its end. Impatient readers should read at least chapter 2 to familiarize
themselves with some basic terms, that are used in this text, before they jump to chapter 5 and
chapter 6. These chapters deal with the installation and give some example code. Chapters 3
and 4 are mainly for reference and the reader will come back to them again and again.

The TRNG manual is not written as an introduction to the Monte Carlo method. It is assumed
that the reader already knows the basic concepts of Monte Carlo. Novices in the Monte Carlo
business find further information in various textbooks on this topic [12, 49, 41, 21, 20, 37].

1.2 History

TRNG started in 2000 as a student research project. Its implementation as well as its technical
design has changed several times. Starting with version 4.0 we adopted the interface proposed
by [5].

Version 4.0 Initial release of TRNG that implements the interface proposed by [5].

Version 4.1 Additive and exclusive-or lagged Fibonacci generators with two and four feedback
taps have been added to the set of PRNGs. Lagged Fibonacci generators do not provide
any splitting facilities. TRNG implements the template function generate_canonical
introduced by [5].

Version 4.2 Documentation has been revised. Minor bug-fixes to lagged Fibonacci generators.

Version 4.3 Rayleigh distribution and class for correlated normal distributed random numbers
added. Changed default parameter sets for generators mrg3s, mrg5s, yarn3s, and yarn5s.
The new parameter sets perform better in the spectral test.

Version 4.4 Class for discrete distributions rewritten to allow efficient change of relative
probabilities after initialization. New random number engine lcg64_shift introduced.

Version 4.5 Minor improvements and bug fixes. Utility functions uniformcc, uniformco,
uniformoc, and uniformoo had been reimplemented as suggested by Bruce Carneal.
The new implementation of these functions is slightly faster and generates random
numbers that are distributed more evenly in the intervals [0, 1], [0, 1), (0, 1], and (0, 1)
respectively. Added support for Snedecor-F- and Student-t-distribution and the class
fast_discrete_dist for faster generation of discrete random numbers withe arbitrary
distribution.

4

2 Pseudo-random numbers for parallel
Monte Carlo simulations

2.1 Pseudo-random numbers

Monte Carlo methods are a class of computational algorithms for simulating the behavior of
various physical and mathematical systems by a stochastic process. While simulating such a
stochastic process on a computer, large amounts of random numbers are consumed. Actually, a
computer as a deterministic machine is not able to generate random digits. John von Neumann,
pioneer in Monte Carlo simulation, summarized this problem in his famous quote:

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

For computer simulations we have to content ourselves with something weaker than random
numbers, namely pseudo-random numbers. We define a stream of PRNs ri in the following in
an informal manner:

• PRNs are generated by a deterministic rule.
• A stream of PRNs ri cannot be distinguished from a true random sequence by means of

practicable methods applying a finite set of statistical tests on finite samples.

Almost all PRNGs produce a sequence r0, r1, r2, . . . of PRNs by a recurrence

ri = f (ri−1, ri−2, . . . , ri−k) , (2.1)

and the art of random number generation lies in the design of the function f (·).
The objective in PRNG design is to find a transition algorithm f (·) that yields a PRNG with

a long period and good statistical properties within the stream of PRNs. Statistical properties
of a PRNG may be investigated by theoretical or empirical means, see [19]. But experience
shows, there is nothing like an ideal PRNG. A PRNG may behave like a perfect source of
randomness in one kind of Monte Carlo simulation, whereas it may suffer from significant
statistical correlations if it is used in another context, which makes the Monte Carlo simulation
unreliable.

2.2 General parallelization techniques for PRNGs

In parallel applications we need to generate streams tj,i of random numbers. Streams are
numbered by j = 0, 1, . . . , p− 1, where p is the number of processes. We require statistical
independency of the tj,i within each stream and between streams as well. Four different
parallelization techniques are used in practice:

5

2 Pseudo-random numbers for parallel Monte Carlo simulations

t

t

t

ri

i

i

i2,

1,

0,

Figure 2.1: Parallelization by block splitting.

t

t

t

ri

i

i

i2,

1,

0,

Figure 2.2: Parallelization by leapfrogging.

Random seeding: All processes use the same PRNG but a different “random” seed. The hope
is that they will generate non-overlapping and uncorrelated subsequences of the original
PRNG. This hope, however, has no theoretical foundation. Random seeding is a violation
of Donald Knuth’s advice “Random number generators should not be chosen at random”
[19].

Parameterization: All processes use the same type of generator but with different parameters
for each processor. Example: linear congruential generators with additive constant bj for
the jth stream [45]:

tj,i = a · tj,i−1 + bj mod 2e , (2.2)

where bj is the (j + 2)th prime number. Another variant uses different multipliers a
for different streams [32]. The theoretical foundation of these methods is weak, and
empirical tests have revealed serious correlations between streams [35]. On massive
parallel system you may need thousands of parallel streams, and it is not trivial to find a
type of PRNG with thousands of “well tested” parameter sets.

Block splitting: Let M be the maximum number of calls to a PRNG by each processor, and let
p be the number of processes. Then we can split the sequence ri of a sequential PRNG
into consecutive blocks of length M such that

t0,i = ri

t1,i = ri+M

. . .
tp−1,i = ri+M(p−1) .

(2.3)

This method works only if we know M in advance or can at least safely estimate an
upper bound for M. To apply block splitting it is necessary to jump from the ith random
number to the (i + M)th number without calculating all the numbers in between, which
cannot be done efficiently for many PRNGs. A potential disadvantage of this method is
that long range correlations, usually not observed in sequential simulations, may become
short range correlations between sub-streams [36, 9]. Block splitting is illustrated in
Figure 2.1.

Leapfrog: The leapfrog method distributes a sequence ri of random numbers over p processes

6

2 Pseudo-random numbers for parallel Monte Carlo simulations

by decimating this base sequence such that

t0,i = rpi

t1,i = rpi+1

. . .
tp−1,i = rpi+(p−1) .

(2.4)

Leapfrogging is illustrated in Figure 2.2. It is the most versatile and robust method for
parallelization and it does not require an a priori estimate of how many random numbers
will be consumed by each processor. An efficient implementation requires a PRNG that
can be modified to generate directly only every pth element of the original sequence.
Again this excludes many popular PRNGs.

At first glance block splitting and leapfrog seem to be quite different approaches. But in fact,
these are closely related to each other. Because if leapfrog is applied to any finite base sequence
the leapfrog sequences are cyclic shifts of each other. Consider an arbitrary sequence ri with
period T. If gcd(T, p) = 1, all leapfrog sequences t1,i, t2,i, . . . , tp,i) are cyclic shifts of each other,
i. e., for every pair of leapfrog sequences tj1,i and tj2,i of a common base sequence ri with period
T there is a constant s, such that tj1,i = tj2,i+s for all i, and s is at least bT/pc. Furthermore, if
gcd(T, p) = d > 1, the period of each leapfrog sequence equals T/d and there are d classes
of leapfrog sequences. Within a class of leapfrog sequences there are p/d sequences, each
sequence is just a cyclic shift of another and the size of the shift is at least bT/pc.

The first two methods, random seeding and parameterization, have little or no theoretical
backup, but their weakest point is yet another. The results of a simulation should not depend
on the number of processors it runs on. Leapfrog and block splitting do allow to organize
simulations such that the same random numbers are used independently of the number of
processors. With parameterization or random seeding the results will always depend on the
parallelization, see section 6.2 for details. PRNGs that do not support leapfrog and block
splitting should not be used in parallel simulations.

2.3 Playing fair

We say that a parallel Monte Carlo simulation plays fair, if its outcome is strictly independent
of the underlying hardware. Fair play implies the use of the same PRNs in the same context,
independently of the number of parallel processes. It is mandatory for debugging, especially
in parallel environments where the number of parallel processes varies from run to run, but
another benefit of playing fair is even more important: Fair play guarantees that the quality of
a PRNG with respect to an application does not depend on the degree of parallelization.

Obviously the use of parameterization or random seeding prevent a simulation from playing
fair. Leapfrog and block splitting, on the other hand, do allow to use the same PRNs within
the same context independently of the number of parallel streams.

Consider the site percolation problem. A site in a lattice of size N is occupied with some
probability, and the occupancy is determined by a PRN. M random configurations are gener-
ated. A naive parallel simulation on p processes could split a base sequence into p leapfrog
streams and having each process generate ≈ M/p lattice configurations, independently of the
other processes. Obviously this parallel simulation is not equivalent to its sequential version,

7

2 Pseudo-random numbers for parallel Monte Carlo simulations

that consumes PRNs from the base sequence to generate one lattice configuration after another.
The effective shape of the resulting lattice configurations depends on the number of processes.
This parallel algorithm does not play fair.

We can turn the site percolation simulation into a fair playing algorithm by leapfrogging
on the level of lattice configurations. Here each process consumes distinct contiguous blocks
of PRNs form the sequence ri, and the workload is spread over p processors in such a way,
that each process analyzes each pth lattice. If we number the processes by their rank i from
0 to p− 1 and the lattices form 0 to M− 1, each process starts with a lattice whose number
equals its own rank. That means process i has to skip i · N PRNs from the sequence ri before
the first lattice configuration is generated. Thereafter each process can skip p− 1 lattices, i. e.,
(p− 1) · N PRNs and continue with the next lattice. In section 6.2 we investigate this approach
in more detail and will give further examples of fair playing Monte Carlo algorithms and their
implementation.

Organizing simulation algorithms such that they play fair is not always as easy as in the
above example, but with a little effort one can achieve fair play in more complicated situations,
too. This may require the combination of block splitting and the leapfrog method, or iterated
leapfrogging. Sometimes it is also necessary to use more than one stream of PRNs per process,
e. g. in the Swendsen Wang cluster algorithm [53, 41] one may use one PRNG to construct the
bond percolation clusters and another PRNG to decide if a cluster has to be flipped.

2.4 Linear feedback shift register sequences

The majority of the PRNG algorithms that are implemented by TRNG are based on so-called
linear feedback shift register sequences. Therefore we review some of its mathematical proper-
ties in this section. Readers how do not want to bother with mathematical details might skip
this and the next section on YARN generators and may come back later.

Numerous recipes for f (·) in (2.1) have been discussed in the literature, see [19, 26] and
references therein. One of the oldest and most popular PRNGs is the linear congruential
generator (LCG)

ri = a · ri−1 + b mod m (2.5)

introduced by Lehmer [28]. The additive constant b may be zero. Knuth [18] proposed a
generalization of Lehmer’s method known as multiple recurrence generator (MRG)

ri = a1ri−1 + a2ri−2 + . . . + anri−n mod m . (2.6)

In the theory of finite fields a sequence of type (2.6) is called linear feedback shift register sequence,
or LFSR sequence for short. Note that a LFSR sequence is fully determined by specifying n
coefficients (a1, a2, . . . , an) plus n initial values (r1, r2, . . . , rn). There is a wealth of rigorous
results on LFSR sequences that can (and should) be used to construct a good PRNG. Here
we only discuss a few but important facts without proofs. A detailed discussion of LFSR
sequences including proofs can be found in [13, 16, 29, 30, 11, 55].

Since the all zero tuple (0, 0, . . . , 0) is a fixed-point of (2.6), the maximum period of a LFSR
sequence cannot exceed mn − 1. The following theorem tells us precisely how to choose the
coefficients (a1, a2, . . . , an) to achieve this period [19]:

8

2 Pseudo-random numbers for parallel Monte Carlo simulations

Theorem 1 The LFSR sequence (2.6) over Fm has period mn− 1, if and only if the characteristic
polynomial

f (x) = xn − a1xn−1 − a2xn−2 − . . .− an (2.7)

is primitive modulo m.

A monic polynomial f (x) of degree n over Fm is primitive modulo m, if and only if it is
irreducible (i. e., cannot be factorized over Fm), and if it has a primitive element of the extension
field Fmn as one of its roots. The number of primitive polynomials of degree n modulo m
is equal to φ(mn − 1)/n = O (mn/(n ln(n ln m))) [54], where φ(x) denotes Euler’s totient
function. As a consequence a random polynomial of degree n is primitive modulo m with
probability ' 1/(n ln(n ln m)), and finding primitive polynomials reduces to testing whether
a given polynomial is primitive. The latter can be done efficiently, if the factorization of mn − 1
is known [16], and most computer algebra systems offer a procedure for this test.

Theorem 2 Let ri be an LFSR sequence (2.6) with a primitive characteristic polynomial. Then
each k-tuple (ri+1, . . . , ri+k) occurs mn−k times per period for k ≤ n (except the all zero tuple
for k = n).

From this theorem it follows that, if a k-tuple of consecutive numbers with k ≤ n is chosen
randomly from a LFSR sequence, the outcome is uniformly distributed over all possible k-
tuples in Fm. This is exactly what one would expect from a truly random sequence. In terms
of Compagner’s ensemble theory tuples of size less than or equal to n drawn from a LFSR
sequence with primitive characteristic polynomial are indistinguishable from truly random
tuples [6, 7].

Theorem 3 Let ri be an LFSR sequence (2.6) with period T = mn − 1 and let α be a complex
mth root of unity and α its complex conjugated. Then

C(h) :=
T

∑
i=1

αri · αri+h =

{
T if h = 0 mod T
−1 if h 6= 0 mod T

. (2.8)

C(h) can be interpreted as autocorrelation function of the sequence, and Theorem 3 tells us
that LFSR sequences with maximum period have autocorrelations that are very similar to the
autocorrelations of a random sequence with period T. Together with the nice equidistribution
properties (Theorem 2) this qualifies LFSR sequences with maximum period as pseudo-noise
sequences, a term originally coined by Golomb for binary sequences [13, 16].

2.4.1 Parallelization of LFSR sequences

As a matter of fact, LFSR sequences do support leapfrog and block splitting very well. Block
splitting means basically jumping ahead in a PRN sequence. In the case of LFSR sequences
this can be done quite efficiently. Note, that by introducing a companion matrix A the linear
recurrence (2.6) can be written as a vector matrix product.

ri−(n−1)
...

ri−1
ri

 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
an an−1 . . . a1


︸ ︷︷ ︸

A


ri−n

...
ri−2
ri−1

 mod m (2.9)

9

2 Pseudo-random numbers for parallel Monte Carlo simulations

From this formula it follows immediately that the M-fold successive iteration of (2.6) may be
written as 

ri−(n−1)
...

ri−1
ri

 = AM


ri−M−(n−1)

...
ri−M−1
ri−M

 mod m . (2.10)

Matrix exponentiation can be accomplished in O
(
n3 ln M

)
steps via binary exponentiation

(also known as exponentiation by squaring).
Implementing leapfrogging efficiently is less straightforward. Calculating tj,i = rpi+j via

rpi+j−(n−1)
...

rpi+j−1
rpi+j

 = Ap


rp(i−1)+j−(n−1)

...
rp(i−1)+j−1
rp(i−1)+j

 mod m (2.11)

is no option, because Ap is usually a dense matrix, in which case calculating a new element
from the leapfrog sequence requires O

(
n2) operations instead of O (n) operations in the base

sequence.
The following theorem assures that the leapfrog subsequences of LFSR sequences are again

LFSR sequences [16]. This will provide us with a very efficient way to generate leapfrog
sequences.

Theorem 4 Let ri be a LFSR sequence based on a primitive polynomial of degree n with period
mn − 1 (pseudo-noise sequence) over Fm, and let (t) be the decimated sequence with lag p > 0
and offset j, e. g.

tj,i = rpi+j . (2.12)

Then tj,i is a LFSR sequence based on a primitive polynomial of degree n, too, if and only if p
and mn − 1 are coprime, e. g. gcd(mn − 1, p) = 1. In addition, ri and tj,i are not just cyclic shifts
of each other, except when

p = mh mod (mn − 1) (2.13)

for some 0 ≤ h < n. If gcd(mn − 1, p) > 1 the sequence tj,i is still a LFSR sequence, but not a
pseudo-noise sequence.

It is not hard to find prime numbers m such that mn − 1 has very few (and large) prime factors.
For such numbers, the leapfrog method yields pseudo-noise sequences for any reasonable
number of parallel streams [3]. While Theorem 4 ensures that leapfrog sequences are not just
cyclic shifts of the base sequence (unless (2.13) holds), the leapfrog sequences are cyclic shifts
of each other, see section 2.2.

Theorem 4 tells us that all leapfrog sequences of a LFSR sequence of degree n can be
generated by another LFSR of degree n or less. The following theorem gives us a recipe to
calculate the coefficients (b1, b2, . . . , bn) of the corresponding leapfrog feedback polynomial.

Theorem 5 Let ti be a (periodic) LFSR sequence over the field Fm and f (x) its characteristic
polynomial of degree n. Then the coefficients (b1, b2, . . . , bn) of f (x) can be computed from 2n

10

2 Pseudo-random numbers for parallel Monte Carlo simulations

successive elements of ti by solving the linear system
ti+n

ti+n+1
...

ti+2n−1

 =


ti+n−1 . . . ti+1 ti
ti+n . . . ti+2 ti+1

...
. . .

...
...

ti+2n−2 . . . ti+n ti+n−1




b1
b2
...

bn

 mod m (2.14)

over Fm.

Starting from the base sequence we determine 2n values of the sequence ti by applying the
leapfrog rule. Then we solve (2.14) by Gaussian elimination to get the characteristic polynomial
for a new LFSR generator that yields the elements of the leapfrog sequence directly with each
call. If the matrix in (2.14) is singular, the linear system has more than one solution, and it
is sufficient to pick one of them. In this case it is always possible to generate the leapfrog
sequence by a LFSR of degree less than the degree of the original sequence.

2.4.2 Choice of modulus

LFSR sequences can be defined over any prime field. In particular LFSR sequences over F2
with sparse feedback polynomials are popular sources of PRNs [17, 56, 19] and generators of
this type can be found in various software libraries. This is due to the fact that multiplication
in F2 is trivial, addition reduces to exclusive-or and the modulo operation comes for free.
As a result, generators that operate in F2 are extremely fast. Unfortunately, these generators
suffer from serious statistical defects [10, 14, 51, 56] that can be blamed to the small size of
the underlying field [1]. In parallel applications we have the additional drawback, that, if the
leapfrog method is applied to a LFSR sequence with sparse characteristic polynomial, the new
sequence will have a dense polynomial. The computational complexity of generating values
of the LFSR sequence grows from O (1) to O (n). Remember that for generators in F2, n is
typically of order 1000 or even larger to get a long period 2n − 1 and reasonable statistical
properties.

The theorems and parallelization techniques we have presented so far do apply to LFSR
sequences over any finite field Fm. Therefore we are free to choose the prime modulus m. In
order to get maximum entropy on the macrostate level [38] m should be as large as possible. A
good choice is to set m to a value that is of the order of the largest representable integer of the
computer. If the computer deals with e-bit registers, we may write the modulus as m = 2e − k,
with k reasonably small. In fact if k(k + 2) ≤ m modular reduction can be done reasonably fast
by a few bit-shifts, additions and multiplications, see chapter 7. Furthermore a large modulus
allows us to restrict the degree of the LFSR to rather small values, e. g. n ≈ 4, while the PRNG
has a large period and good statistical properties.

In accordance with Theorem 4 a leapfrog sequence of a pseudo-noise sequence is a pseudo-
noise sequence, too, if and only if its period mn − 1 and the lag p are coprime. For that reason
mn − 1 should have a small number of prime factors. It can be shown that mn − 1 has at
least three prime factors and if the number of prime factors does not exceed three, then m is
necessarily a Sophie-Germain Prime and n a prime larger than two [3].

To sum up, the modulus m of a LFSR sequence should be a Sophie-Germain Prime, such
that mn − 1 has not more than three prime factors and such that m = 2e − k and k(k + 2) ≤ m
for some integers e and k.

11

2 Pseudo-random numbers for parallel Monte Carlo simulations

2.5 Non-linear transformations and YARN sequences

LFSR sequences over prime fields with a large prime modulus seem to be ideally suited as
PRNGs. They have, however, a well known weakness. When used to sample coordinates
in d-dimensional space, pseudo-noise sequences cover every point for d < n, and every
point except (0, 0, . . . , 0) for d = n. For d > n the set of positions generated is obviously
sparse, and the linearity of the production rule (2.6) leads to the concentration of the sampling
points on n-dimensional hyper-planes [15, 23], see also Figure 2.3. This phenomenon, first
noticed by Marsaglia in 1968 [31], constitutes one of the well known tests of randomness
applied to PRNGs, the so-called spectral test [19]. The spectral test checks the behavior of
a generator when its outputs are used to form d-tuples. Closely related to this mechanism
are the observed correlations in other empirical tests like the birthday spacings test and the
collision test [25, 27]. Non-linear generators do quite well in all these tests, but compared to
LFSR sequences they have much less nice and provable properties and they are not suited for
fair playing parallelization.

To get the best of both worlds we propose a delinearization that preserves all the nice
properties of linear pseudo-noise sequences. That means each element of a linear pseudo-noise
sequence qi ∈ Fm is transformed to another element in Fm by a non-linear bijective mapping.
If m is prime, such a bijective mapping is given by an exponentiation.

Theorem 6 Let ri be a pseudo-noise sequence in Fm, and let g be a generating element of the
multiplicative group F∗m. Then the sequence qi with

qi =

{
gri mod m if ri > 0
0 if ri = 0

(2.15)

is a pseudo-noise sequence, too.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r
i
/1999

r
i+

1
/

1
9
9
9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q
i
/1999

q i+
1
/

1
9
9
9

Figure 2.3: Exponentiation of a generating element in a prime field is an effective way to destroy
the linear structures of LFSR sequences. Both pictures show the full period of the generator. Left:
ri = 95 · ri−i mod 1999. Right: qi = 1099ri mod 1999 with ri = 95 · ri−i mod 1999.

12

2 Pseudo-random numbers for parallel Monte Carlo simulations

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

l/T

L
(q

)(l
)/

T

l/(2T)
linear complexity profile

Figure 2.4: Linear complexity profile L(q)(l) of a YARN sequence, produced by the recurrence ri =
173 · ri−1 + 219 · ri−2 mod 317 and qi = 151ri mod 317. The period of this sequence equals T = 3172 − 1.

The proof of this theorem is trivial: since g is a generator of F∗m, the map (2.15) is bijective.
We call delinearized generators based on Theorem 6 YARN generators (yet another random
number).

The linearity is completely destroyed by the map (2.15), see Figure 2.3. Let L(r)(l) denote
the linear complexity of the subsequence (r1, r2, . . . , rl). This function is known as the linear
complexity profile of ri. For a truly random sequence it grows on average like l/2. Figure 2.4
shows the linear complexity profile L(r)(l) of a typical YARN sequence. It shows the same
growth rate as a truly random sequence up to the point where more than 99 % of the period
have been considered. Sharing the linear complexity profile with a truly random sequence, we
may say that the YARN generator is as non-linear as it can get.

The non-linear transform by exponentiation in Theorem 6 has to be carried out in a prime
field Fm. If the underlying generator produces integers in some range [0, m), where m is not
prime (i. e. a power of two), another kind of non-linear transformation has to be applied to
improve the underlying generator. For m = 2e Press et al. [46] suggest to transform the output
ri of a base generator by

ti,0 = ri

ti,1 = ti,0 ⊕ (ti,0 � a0)
ti,2 = ti,1 ⊕ (ti,1 � a1)
ti,3 = ti,2 ⊕ (ti,2 � a2)
qi = ti,3

(2.16)

where ⊕ denotes binary addition (exclusive-or), x � n bit-shift of x to the right of size n and
x � n bit-shift of x to the left of size n, respectively. The parameters a0, a1 and a2 have to be
chosen suitable to make (2.16) a bijective mapping from ri to qi, see [46]. Figure 2.5 shows how
the mapping (2.16) efficiently destroys the lattice structures of linear congruential generators
modulo a power on two.

13

2 Pseudo-random numbers for parallel Monte Carlo simulations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r
i
/2048

r
i+

1
/

2
0
4
8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q
i
/2048

q i+
1
/

2
0
4
8

Figure 2.5: The non-linear mapping (2.16) destroys the lattice structures of linear congruential genera-
tors. Both pictures show the full period of the generator. Left: ri = 9 · ri−i + 1 mod 2048. Right: qi given
by (2.16) with a0 = 5, a1 = 9, a2 = 2 and ri = 9 · ri−i + 1 mod 2048.

14

3 Basic concepts

The TRNG library consists of a loose bunch of classes. These classes can be divided into to
kinds of classes, random number engines and random number distributions.

Random number engines are the workhorses of TRNG. Each random number engine im-
plements some algorithm that is used to produce pseudo-random numbers. The notion of a
random number engine as it is used by TRNG was introduced by [5] and it is a very general
concept. For example the random number engine concept does not specify what kind of
pseudo-random numbers (integers, floating point numbers or just bits) are generated. All
random number engine classes of TRNG implement the concept of a random number engine as
introduced in [5]. But in TRNG the notion of a random number engine is extended to a parallel
random number engine. To fulfill the requirements of a parallel random number engine, a class
has to fulfill all the requirements of a random number engine and in addition some further
requirements that make them applicable for parallel Monte Carlo simulations. The random
number engine concept and the parallel random number engine concept will be discussed in
detail in section 3.1.

A random number engine is not very useful by itself. To write some real world Monte
Carlo applications we need random number distribution classes, too. A random number
distribution class converts the output of an arbitrary random number engine into a pseudo-
random number with some specific distribution. The general concept of a random number
distribution is discussed in section 3.2.

3.1 Random number engines

To be a random number engine, a class has to fulfill a set of requirements that we will sum-
marize as follows, for details see [5]. A class X satisfies the requirements of a random number
engine, if the expressions as shown in Table 3.1 are valid and have the indicated semantics. In
that table and throughout this section,

• T is the type named by X’s associated result_type;
• t is a value of T;
• u is a value of X, v is an lvalue of X, x and y are (possibly const) values of X;
• s is a value of integral type;
• g is an lvalue, of a type other than X, that defines a zero-argument function object

returning values of type unsigned long;
• os is an lvalue of the type of some class template specialization std::basic_ostream
<charT, traits>; and
• is is an lvalue of the type of some class template specialization std::basic_istream
<charT, traits>.

A random number engine object x has at any given time a state xi for some integer i ≥ 0. Upon
construction, a random number engine x has an initial state x0. The state of an engine may

15

3 Basic concepts

Table 3.1: Random number engine requirements.

expression return type pre/post-condition complexity

X::result_type T T is an arithmetic type other than bool. compile-time

u() T Sets the state to ui+1 = TA(ui) and returns
GA(ui). If X is integral, returns a value in the
closed interval [X::min, X::max]; otherwise, re-
turns a value in the open interval (0, 1).

amortized con-
stant

X::min T, if X is in-
tegral; other-
wise int.

If X is integral, denotes the least value poten-
tially returned by operator(); otherwise de-
notes 0.

compile-time

X::max T, if X is in-
tegral; other-
wise int.

If X is integral, denotes the greatest value po-
tentially returned by operator(); otherwise de-
notes 1.

compile-time

X() Creates an engine with the same initial state as
all other default-constructed engines of type X.

O (size of state)

X(s) Creates an engine with initial state determined
by static_cast<unsigned long>(s).

O (size of state)

X(g) Creates an engine with initial state determined
by the results of successive invocations of g.
Throws what and when g throws.

O (size of state)

u.seed() void post: u==X() same as X()

u.seed(s) void post: u==X(s) same as X(s)

u.seed(g) void post: If g does not throw, u==v, where the state
of v is as if constructed by X(g). Otherwise, the
exception is re-thrown and the engine s state is
deemed invalid. Thereafter, further use of u is
undefined except for destruction or invoking a
function that establishes a valid state.

same as X(g)

x==y bool With Sx and Sy as the infinite sequences of val-
ues that would be generated by repeated calls
to x() and y(), respectively, returns true if
Sx = Sy; returns false otherwise.

O (size of state)

x!=y bool !(x==y) O (size of state)

be established by invoking its constructor, seed member function, operator=, or a suitable
operator>>.

The specification of each random number engine defines the size of its state in multiples of
the size of its result_type, given as an integral constant expression. The specification of each
random number engine also defines

• the transition algorithm TA by which the state xi of an engine is advanced to its successor
state xi+1, and
• the generation algorithm GA by which the state of an engine is mapped to a value of type
result_type.

16

3 Basic concepts

Table 3.1: Random number engine requirements continued.

expression return type pre/post-condition complexity

os << x reference to
the type of
os

With os.fmtflags set to std::ios_base::dec|
std::ios_base::fixed|std::ios_base::
left and the fill character set to the space char-
acter, writes to os the textual representation
of x’s current state. In the output, adjacent
numbers are separated by one or more space
characters. post: The os.fmtflags and fill
character are unchanged.

O (size of state)

is >> v reference to
the type of
is

Sets v’s state as determined by reading its tex-
tual representation from is. If bad input is en-
countered, ensures that v’s state is unchanged
by the operation and calls is.setstate(std::
ios::failbit) (which may throw std::ios::
failure). pre: The textual representation was
previously written using an os whose imbued
locale and whose type’s template specialization
arguments charT and traits were the same
as those of is. post: The is.fmtflags are un-
changed.

O (size of state)

Table 3.2: Parallel random number engine requirements.

expression return type pre/post-condition complexity

split(s, p) void pre: s and p are of type unsigned int with
s < p. If s ≥ p an exception std::invalid_
argument is thrown.
post: Internal parameters of the random num-
ber engine are changed in such a way, that fu-
ture calls to operator() will generate the sth
sub-stream of p sub-streams. Sub-streams are
numbered from 0 to p− 1. The complexity of
operator() will not change.

polynomial in
size of state, p
and s

jump2(s) void pre: s is of type unsigned int.
post: Internal state of the random number en-
gine is changed in such a way, that the engine
jumps 2s steps ahead.

polynomial in
size of state and
s

jump(s) void pre: s is of type unsigned long long.
post: Internal state of the random number en-
gine is changed in such a way, that the engine
jumps s steps ahead.

polynomial in
size of state and
the logarithm of
s

17

3 Basic concepts

Furthermore, a random number engine shall fulfill the requirements of the concepts “Copy-
Constructible” and of “Assignable”. That means roughly, random number engines support
copy and assignment operations with the same semantic like build-in types as int or double.
Copy construction and assignment shall each be of complexity O (size of state).

Random number engine requirements had been adopted from [5]. For parallel Monte Carlo
applications we extend the concept of a random number engine to a parallel random number
engine. Such an engine has to meet all the requirements of a parallel random number engine
and additionally the requirements shown in Table 3.2.

A parallel random number engine provides block splitting and leapfrog. Note that it is
demanded that leapfrog is implemented in such a way, that the complexity of operator()
will not depend on, in how many sub-streams a stream has been split. That means, a valid
implementation of leapfrog will not just calculate all random numbers of a stream and then
throw away bunches of numbers to derive the random numbers of a leapfrog sub-stream.
This rather strong requirement restricts the number of pseudo-random number generator
algorithms that are proper for parallel random number engines. But LFSR sequences and
YARN generators, which had been discussed in sections 2.4 and 6, meet these conditions easily.

3.2 Random number distributions

To model the concept of a random number distribution a class has to fulfill a set of requirements
that we will summarize as follows, refer to [5] for details. A class X satisfies the requirements
of a random number distribution if the expressions shown in Table 3.3 are valid and have the
indicated semantics, and if X and its associated types also satisfies all other requirements of
this section. In that table and throughout this section,

• T is the type named by X’s associated result_type;
• P is the type named by X’s associated param_type;
• u is a value of X and x is a (possibly const) value of X;
• glb and lub are values of T respectively corresponding to the greatest lower bound

and the least upper bound on the values potentially returned by u’s operator(), as
determined by the current values of u’s parameters;
• p is a value of P;
• e is an lvalue of an arbitrary type that satisfies the requirements of a uniform random

number generator;
• os is an lvalue of the type of some class template specialization basic_ostream<charT,
traits>; and
• is is an lvalue of the type of some class template specialization basic_istream<charT,
traits>.

The specification of each random number distribution identifies an associated mathematical
probability density function p(z) or an associated discrete probability function P(zi). Such functions
are typically expressed using certain externally supplied quantities known as the parameters
of the distribution. Such distribution parameters are identified in this context by writing,
for example, p(z|a, b) or P(zi|a, b), to name specific parameters, or by writing, for example,
p(z|{p}) or P(zi|{p}), to denote the parameters p of a distribution taken as a whole.

Furthermore a random number distribution shall fulfill the requirements of the concepts
“CopyConstructible” and of “Assignable”. That means roughly, random number distributions

18

3 Basic concepts

support copy and assignment operations with the same semantic like build-in types like int
or double. Copy construction and assignment shall each be of complexity O (size of state).

For each of the constructors of X taking arguments corresponding to parameters of the
distribution, P shall have a corresponding constructor subject to the same requirements and
taking arguments identical in number, type, and default values. Moreover, for each of the
member functions of X that return values corresponding to parameters of the distribution, P
shall have a corresponding member function with the identical name, type, and semantics.

19

3 Basic concepts

Table 3.3: Random number distribution requirements.

expression return type pre/post-condition complexity

X::result_type T T is an arithmetic type. compile-time

X::param_type P compile-time

X(p) Creates a distribution whose behavior is indis-
tinguishable from that of a distribution newly
constructed directly from the values used to
construct p.

same as p’s con-
struction

u.reset() void Subsequent uses of u do not depend on values
produced by e prior to invoking reset.

constant

x.param() P Returns a value p such that X(p).param()==p. no worse than
the complexity
of X(p)

u.param(p) void post: u.param() == p. no worse than
the complexity
of X(p)

u(e) T With p=u.param(), the sequence of numbers re-
turned by successive invocations with the same
object e is randomly distributed according to
the associated p(z|{p}) or P(zi|{p}) function.

amortized con-
stant number of
invocations of e

u(e,p) T The sequence of numbers returned by succes-
sive invocations with the same objects e and p
is randomly distributed according to the asso-
ciated p(z|{p}) or P(zi|{p}) function

x.min() T Returns glb. constant

x.max() T Returns lub. constant

os << x reference to
the type of
os

Writes to os a textual representation for the pa-
rameters and the additional internal data of x.
post: The os.fmtflags and fill character are un-
changed.

is >> u reference to
the type of
is

Restores from is the parameters and additional
internal data of u. If bad input is encountered,
ensures that u’s state is unchanged by the op-
eration and calls is.setstate(ios::failbit)
(which may throw std::ios::failure).
pre: is provides a textual representation that
was previously written using an os whose im-
bued locale and whose type’s template special-
ization arguments charT and traits were the
same as those of is.
post: The is.fmtflags are unchanged.

20

4 TRNG classes

In chapter 3 the abstract concepts of (parallel) random number engines and random number
distributions had been introduced. Now we look at some actual realizations of these concepts.
TRNG provides several (parallel) random number engines and random number distributions.
Each engine and each distribution is implemented by its own class that resides in the name
space trng.

4.1 Random number engines

In this section we give a detailed documentation of all random number engines. Each subsec-
tion describes the public interface of one random number engine and focuses on aspects that
are specific for a particular random number engine. This includes extensions to the random
number engine interface as well as algorithmic details. That part of the public interface, that is
mandatory for each (parallel) random number engine, will not be discussed in detail. Read
section 3.1 instead. Table 4.1 gives an overview over all random number engines of TRNG.

All classes that will be describe in this section model either a random number engine or a
parallel random number engine and therefore fulfill the requirements introduced in section 3.1.
But for convenience their interface provides even more. For example all random number
engines model a random number generator as well. The notion of a random number generator
had been introduced by the C++ Standard Template Library. A random number generator is a
class that provides an operator()(long) that returns a uniformly distributed random integer
larger than or equal to zero but less than its argument. That makes TRNG (parallel) random
number engines applicable to the STL algorithm std::random_shuffle. Additionally TRNG
(parallel) random number engines provide a function name() that returns a string with the
name of the random number engine.

4.1.1 Linear congruential generators

The classes trng::lcg64 and trng::lcg64_shift implement linear congruential generators.
Both generators are based on the transition algorithm [28, 19]

ri+1 = a · ri + b mod 264 .

The state of this generator at time i is given by ri. Its period equals 264 if and only if b is odd and
a mod 4 = 1 [19]. The statistical properties of linear congruential generators depend crucial on
the choice of the multiplier a, which has to be chosen carefully.

This linear congruential generator trng::lcg64 is the quick and dirty generator of TRNG. It’s
dammed fast, see section 7, but even for proper chosen parameters a and b the lower bits of ri
are less random than the higher order bits. The class trng::lcg64 should be avoided whenever
the randomness of lower bits have a significant impact to the simulation. In [22] L’Ecuyer
warns about multiplicative linear congruential generators (MLCG) with ri+1 = a · ri mod m:

21

4 TRNG classes

Table 4.1: Random number engines of TRNG.

random number
engine description concept

trng::lcg64 linear congruential generator with modulus 264 parallel random
number engine

trng::lcg64_shift linear congruential generator with modulus 264 with
additional bit-shift transformation

parallel random
number engine

trng::mrgn multiple recurrence generator based on a linear feed-
back shift register sequence over F231−1 of depth n

parallel random
number engine

trng::mrgns multiple recurrence generator based on a linear feed-
back shift register sequence over Fm of depth n, with
m being a Sophie-Germain Prime

parallel random
number engine

trng::yarnn YARN sequence based on a linear feedback shift
register sequence over F231−1 of depth n

parallel random
number engine

trng::yarnns YARN sequence based on a linear feedback shift
register sequence over Fm of depth n, with m being
a Sophie-Germain Prime

parallel random
number engine

trng::lagfibnxor lagged Fibonacci generator with n feedback taps
and exclusive-or operation

random number
engine

trng::lagfibnplus lagged Fibonacci generator with n feedback taps
and addition

random number
engine

“If m = 2e where e is the number of bits on the computer word, and if one can
use unsigned integers without overflow checking, the products modulo m are easy
to compute: just discard the overflow. This is quick and simple. For that reason,
MLCGs with moduli of this form are used abundantly in practice, despite their
serious drawbacks. Some nuclear physicists, for instance, perform simulations that
use billions of random numbers on supercomputers and are quite reluctant to give
up using them [. . .]. Usually, they also generate many substreams in parallel. In
view of the above remarks, all this appears dangerous. Perhaps some people like
playing with fire.”

The same warning applies if b 6= 0. In spite of its weakness this generator is well suited for a
large classes of generic Monte Carlo schemes, e. g. simulating a (biased) coin or cluster Monte
Carlo [10].

But in some kinds of simulations linear congruential generators reveal their weakness, i. e.
their lattice structure, see left part of Figure 2.5. Class trng::lcg64_shift is based on the
recursion

ri+1 = a · ri + b mod 264 ,

22

4 TRNG classes

too, but it destroys the lattice structure of ri by the non-linear transformation

ti,0 = ri

ti,1 = ti,0 ⊕ (ti,0 � 17)
ti,2 = ti,1 ⊕ (ti,1 � 31)
ti,3 = ti,2 ⊕ (ti,2 � 8)
qi = ti,3

where ⊕ denotes binary addition (exclusive-or), x � n bit-shift of x to the right of size n and
x � n bit-shift of x to the left of size n, respectively. Class trng::lcg64_shift is only slightly
slower than trng::lcg64 but the statistical quality is considerably increased by the non-linear
transformation.

The class trng::lcg64 is declared in the header file trng/lcg64.hpp and its public interface
is given as follows:

namespace trng {

class lcg64 {
public:

First the necessary type, static class constants, and the call operator are declared.

typedef unsigned long long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

We also define some parameter and status classes that will be used internally and by the
constructor.

class parameter_type;
class status_type;

TRNG provides four parameter sets for a and b, which are chosen to give good statistical
properties. Three of these are taken from [24], the default parameter set had been found by the
author of TRNG.

a = 18 145 460 002 477 866 997 , b = 1

static const parameter_type Default;

a = 2 862 933 555 777 941 757 , b = 1

static const parameter_type LEcuyer1;

a = 3 202 034 522 624 059 733 , b = 1

static const parameter_type LEcuyer2;

a = 3 935 559 000 370 003 845 , b = 1

static const parameter_type LEcuyer3;

23

4 TRNG classes

An instance of class trng::lcg64 can be instantiated by various constructors as specified for a
random number engine. Additionally a non-default parameter set may be given.

explicit lcg64(parameter_type=Default);
explicit lcg64(unsigned long, parameter_type=Default);
template<typename gen>
explicit lcg64(gen &, parameter_type P=Default);

Class trng::lcg64 provides all necessary seeding functions (see Table 3.1) and an additional
function that sets ri.

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type);

The following three methods are necessary for a parallel random number engine.

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

Furthermore the class trng::lcg64 provides a function that returns the string lcg64 and an
operator operator().

static const char * name();
long operator()(long) const;

};

Random number engines are comparable and can be written to or read from a stream.

bool operator==(const lcg64 &, const lcg64 &);
bool operator!=(const lcg64 &, const lcg64 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lcg64 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lcg64 &);

}

Class trng::lcg64_shift provides the same public interface as trng::lcg64.

namespace trng {

class lcg64_shift {
public:
typedef unsigned long long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;
class parameter_type;
class status_type;
static const parameter_type Default;
static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;
static const parameter_type LEcuyer3;
explicit lcg64_shift(parameter_type=Default);

24

4 TRNG classes

explicit lcg64_shift(unsigned long, parameter_type=Default);
template<typename gen>
explicit lcg64_shift(gen &, parameter_type P=Default);
void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type);
void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);
static const char * name();
long operator()(long) const;

};

bool operator==(const lcg64_shift &, const lcg64_shift &);
bool operator!=(const lcg64_shift &, const lcg64_shift &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lcg64_shift &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lcg64_shift &);

}

4.1.2 Multiple recursive generators

TRNG offers several multiple recursive generators based on LFSR sequences over prime fields
Fm with different numbers of feedback taps. These are implemented by the classes trng::mrg2,
trng::mrg3, trng::mrg3s, trng::mrg4, trng::mrg5, and trng::mrg5s. Table 4.2 summarizes
the key features of these classes. The transition algorithm of a multiple recursive generator
with n feedback taps reads

ri = a1 · ri−1 + a2 · ri−2 + . . . + an · rn−2 mod m .

The state of this generator at time i is given by (ri−1, ri−2, . . . , ri−n). See section 2.4 for details
on LFSR sequences.

The prime modulus m that characterizes the prime field Fm was either chosen as the Mer-
senne Prime (classes trng::mrgn) or a Sophie-Germain Prime such that mn − 1 has as few
prime factors as possible (classes trng::mrgns). The former choice gives us some performance
benefits, see section 7.1, whereas the second has some theoretical advantages, see section 2.4.2.

The classes trng::mrgn and trng::mrgns implement the interface described in section 3.1.
Each class defines some parameter and status classes that will be used internally and by the
constructor. Furthermore for each generator several parameter sets are given, see Table 4.3.
Most of the parameter sets are taken from [23] and chosen to give generators with good
statistical properties.

An instance of a class trng::mrgn or trng::mrgns can be instantiated by various constructors
as specified for a random number engine. Additionally a non-default parameter set may be
chosen. The classes trng::mrgn and trng::mrgns provide all necessary seeding functions
(see Table 3.1) and additionally a function that sets the internal state (ri−1, ri−2, . . . , ri−n). This
function should never be called with all arguments set to zero. The classes trng::mrgn and
trng::mrgns model the concept of a parallel random number engine and therefore the methods

25

4 TRNG classes

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

are implemented. Furthermore the classes trng::mrgn or trng::mrgns provide a function
that returns a string with its name and an operator operator(). Random number engines are
comparable and can be written to or read from a stream.

The detailed interface of the classes trng::mrgn or trng::mrgns is given as follows:

namespace trng {

class mrg2 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit mrg2(parameter_type=LEcuyer1);
explicit mrg2(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg2(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const mrg2 &, const mrg2 &);
bool operator!=(const mrg2 &, const mrg2 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg2 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg2 &);

}

26

4 TRNG classes

Ta
bl

e
4.

2:
K

ey
fe

at
ur

es
of

m
ul

ti
pl

e
re

cu
rs

iv
e

ge
ne

ra
to

r
cl

as
se

s.

he
ad

er
fe

ed
ba

ck
pr

im
e

re
tu

rn
va

lu
e

cl
as

s
fil

e
ta

ps
n

fie
ld

F
m

pe
ri

od
of

na
me

()

tr
ng

::
mr

g2
tr

ng
/m

rg
2.

hp
p

2
F

23
1 −

1
m

2
−

1
≈

262
≈

4.
61
·1

018
mr

g2
tr

ng
::

mr
g3

tr
ng

/m
rg

3.
hp

p
3

F
23

1 −
1

m
3
−

1
≈

293
≈

9.
90
·1

027
mr

g3
tr

ng
::

mr
g3

s
tr

ng
/m

rg
3s

.h
pp

3
F

23
1 −

21
06

9
m

3
−

1
≈

293
≈

9.
90
·1

027
mr

g4
s

tr
ng

::
mr

g4
tr

ng
/m

rg
4.

hp
p

4
F

23
1 −

1
m

4
−

1
≈

212
4
≈

2.
13
·1

037
mr

g4
tr

ng
::

mr
g5

tr
ng

/m
rg

5.
hp

p
5

F
23

1 −
1

m
5
−

1
≈

215
5
≈

4.
57
·1

046
mr

g5
tr

ng
::

mr
g5

s
tr

ng
/m

rg
5s

.h
pp

5
F

23
1 −

22
64

1
m

5
−

1
≈

215
5
≈

4.
57
·1

046
mr

g5
s

Ta
bl

e
4.

3:
Pa

ra
m

et
er

se
ts

fo
r

m
ul

ti
pl

e
re

cu
rs

iv
e

ge
ne

ra
to

rs
.

pa
ra

m
et

er
se

t
a 1

a 2
a 3

a 4
a 5

tr
ng

::
mr

g2
::

LE
cu

ye
r1

1
49

8
80

9
82

9
1

16
0

99
0

99
6

tr
ng

::
mr

g2
::

LE
cu

ye
r2

46
32

5
1

08
4

58
7

tr
ng

::
mr

g3
::

LE
cu

ye
r1

2
02

1
42

2
05

7
1

82
6

99
2

35
1

1
97

7
75

3
45

7
tr

ng
::

mr
g3

::
LE

cu
ye

r2
1

47
6

72
8

72
9

0
1

15
5

64
3

11
3

tr
ng

::
mr

g3
::

LE
cu

ye
r3

65
33

8
0

64
63

6
tr

ng
::

mr
g3

s:
:t

rn
g0

2
02

5
21

3
98

5
1

11
2

95
3

67
7

2
03

8
96

9
60

1
tr

ng
::

mr
g3

s:
:t

rn
g1

1
28

7
76

7
37

0
1

04
5

93
1

77
9

58
15

0
10

6
tr

ng
::

mr
g4

::
LE

cu
ye

r1
2

00
1

98
2

72
2

1
41

2
28

4
25

7
1

15
5

38
0

21
7

1
66

8
33

9
92

2
tr

ng
::

mr
g4

::
LE

cu
ye

r2
64

88
6

0
0

64
32

2
tr

ng
::

mr
g5

::
LE

cu
ye

r1
10

7
37

4
18

2
0

0
0

10
4

48
0

tr
ng

::
mr

g5
s:

:t
rn

g0
1

05
3

22
3

37
3

1
53

0
81

8
11

8
1

61
2

12
2

48
2

13
3

49
7

98
9

57
3

24
5

31
1

tr
ng

::
mr

g5
s:

:t
rn

g1
2

06
8

61
9

23
8

2
13

8
33

2
91

2
67

1
75

4
16

6
1

44
2

24
0

99
2

1
52

6
95

8
81

7

27

4 TRNG classes

namespace trng {

class mrg3 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;
static const parameter_type LEcuyer3;

explicit mrg3(parameter_type=LEcuyer1);
explicit mrg3(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg3(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const mrg3 &, const mrg3 &);
bool operator!=(const mrg3 &, const mrg3 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg3 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg3 &);

}

namespace trng {

class mrg3s {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

28

4 TRNG classes

static const parameter_type trng0;
static const parameter_type trng1;

explicit mrg3s(parameter_type=trng0);
explicit mrg3s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit mrg3s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const mrg3s &, const mrg3s &);
bool operator!=(const mrg3s &, const mrg3s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg3s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg3s &);

}

namespace trng {

class mrg4 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit mrg4(parameter_type=LEcuyer1);
explicit mrg4(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg4(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type);

29

4 TRNG classes

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const mrg4 &, const mrg4 &);
bool operator!=(const mrg4 &, const mrg4 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg4 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg4 &);

}

namespace trng {

class mrg5 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;

explicit mrg5(parameter_type=LEcuyer1);
explicit mrg5(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg5(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const mrg5 &, const mrg5 &);
bool operator!=(const mrg5 &, const mrg5 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg5 &);

30

4 TRNG classes

template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg5 &);

}

namespace trng {

class mrg5s {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type trng0;
static const parameter_type trng1;

explicit mrg5s(parameter_type=trng0);
explicit mrg5s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit mrg5s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const mrg5s &, const mrg5s &);
bool operator!=(const mrg5s &, const mrg5s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg5s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg5s &);

}

4.1.3 YARN generators

The classes trng::yarnn and trng::yarnns implement so-called YARN generators (yet an-
other random number generator). Table 4.4 summarizes the key features of these classes.
Each of them is based on a multiple recursive generator with n feedback taps, for which the

31

4 TRNG classes

transition algorithm reads

ri = a1 · ri−1 + a2 · ri−2 + . . . + an · ri−n mod m .

The state of this generator at time i is given by (ri−1, ri−2, . . . , ri−n). See section 2.4 for details
on LFSR sequences.

The prime modulus m that characterizes the prime field Fm was either chosen as the Mer-
senne Prime (classes trng::mrgn) or a Sophie-Germain Prime such that mn − 1 has as few
prime factors as possible (classes trng::mrgns). The former choice gives us some performance
benefits, see section 7.1, whereas the second has some theoretical advantages, see section 2.4.2.

While pure multiple recursive generators return the ri as pseudo-random numbers directly,
a YARN generator “shuffles” the output of the underlying multiple recursive generator by a
bijective mapping. In the case of a YARN generator with modulus m this mapping reads

qi =

{
bri mod m if ri > 0
0 if ri = 0

,

where b is a generating element of the multiplicative group modulo m. This bijective mapping
destroys the linear structures of the linear feedback shift register sequence. But on the other
hand the new sequence qi inherits all the nice features of the linear feedback shift register
sequence ri, e. g. its period. Block splitting and leapfrog methods can be implemented as easily
as for multiple recursive generators, see section 2.4 and 2.5 for details.

The classes trng::yarnn and trng::yarnns implement the interface described in section 3.1.
Each class defines some parameter and status classes that will be used internally and by the
constructor. Furthermore for each generator several parameter sets are given, see Table 4.3.
Most of the parameter sets are taken from [23] and chosen to give generators with good
statistical properties.

An instance of a class trng::yarnn or trng::yarnns can be instantiated by various construc-
tors as specified for a random number engine. Additionally a non-default parameter set may
be chosen. The classes trng::yarnn and trng::yarnns provide all necessary seeding func-
tions (see Table 3.1) and additionally a function that sets the internal state (ri−1, ri−2, . . . , ri−n).
This function should never be called with all arguments set to zero. The classes trng::yarnn
and trng::yarnns model the concept of a parallel random number engine and therefore the
methods

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

are implemented. Furthermore the classes trng::yarnn or trng::yarnns provide a function
that returns a string with its name and an operator operator(). Random number engines are
comparable and can be written to or read from a stream.

The detailed interface of the classes trng::mrgn or trng::mrgns is given as follows:

namespace trng {

class yarn2 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;

32

4 TRNG classes

Ta
bl

e
4.

4:
K

ey
fe

at
ur

es
of

YA
R

N
ge

ne
ra

to
r

cl
as

se
s.

he
ad

er
fe

ed
ba

ck
pr

im
e

re
tu

rn
va

lu
e

cl
as

s
fil

e
ta

ps
n

fie
ld

F
m

pe
ri

od
of

na
me

()

tr
ng

::
ya

rn
2

tr
ng

/y
ar

n2
.h

pp
2

F
23

1 −
1

m
2
−

1
≈

262
≈

4.
61
·1

018
ya

rn
2

tr
ng

::
ya

rn
3

tr
ng

/y
ar

n3
.h

pp
3

F
23

1 −
1

m
3
−

1
≈

293
≈

9.
90
·1

027
ya

rn
3

tr
ng

::
ya

rn
3s

tr
ng

/y
ar

n3
s.

hp
p

3
F

23
1 −

21
06

9
m

3
−

1
≈

293
≈

9.
90
·1

027
ya

rn
4s

tr
ng

::
ya

rn
4

tr
ng

/y
ar

n4
.h

pp
4

F
23

1 −
1

m
4
−

1
≈

212
4
≈

2.
13
·1

037
ya

rn
4

tr
ng

::
ya

rn
5

tr
ng

/y
ar

n5
.h

pp
5

F
23

1 −
1

m
5
−

1
≈

215
5
≈

4.
57
·1

046
ya

rn
5

tr
ng

::
ya

rn
5s

tr
ng

/y
ar

n5
s.

hp
p

5
F

23
1 −

22
64

1
m

5
−

1
≈

215
5
≈

4.
57
·1

046
ya

rn
5s

Ta
bl

e
4.

5:
Pa

ra
m

et
er

se
ts

fo
r

YA
R

N
ge

ne
ra

to
rs

.

pa
ra

m
et

er
se

t
a 1

a 2
a 3

a 4
a 5

b

tr
ng

::
ya

rn
2:

:L
Ec

uy
er

1
1

49
8

80
9

82
9

1
16

0
99

0
99

6
12

3
56

7
89

3
tr

ng
::

ya
rn

2:
:L

Ec
uy

er
2

46
32

5
1

08
4

58
7

12
3

56
7

89
3

tr
ng

::
ya

rn
3:

:L
Ec

uy
er

1
2

02
1

42
2

05
7

1
82

6
99

2
35

1
1

97
7

75
3

45
7

12
3

56
7

89
3

tr
ng

::
ya

rn
3:

:L
Ec

uy
er

2
1

47
6

72
8

72
9

0
1

15
5

64
3

11
3

12
3

56
7

89
3

tr
ng

::
ya

rn
3:

:L
Ec

uy
er

3
65

33
8

0
64

63
6

12
3

56
7

89
3

tr
ng

::
ya

rn
3s

::
tr

ng
0

2
02

5
21

3
98

5
1

11
2

95
3

67
7

2
03

8
96

9
60

1
1

61
6

07
6

84
7

tr
ng

::
ya

rn
3s

::
tr

ng
1

1
28

7
76

7
37

0
1

04
5

93
1

77
9

58
15

0
10

6
1

61
6

07
6

84
7

tr
ng

::
ya

rn
4:

:L
Ec

uy
er

1
2

00
1

98
2

72
2

1
41

2
28

4
25

7
1

15
5

38
0

21
7

1
66

8
33

9
92

2
12

3
56

7
89

3
tr

ng
::

ya
rn

4:
:L

Ec
uy

er
2

64
88

6
0

0
64

32
2

12
3

56
7

89
3

tr
ng

::
ya

rn
5:

:L
Ec

uy
er

1
10

7
37

4
18

2
0

0
0

10
4

48
0

12
3

56
7

89
3

tr
ng

::
ya

rn
5s

::
tr

ng
0

1
05

3
22

3
37

3
1

53
0

81
8

11
8

1
61

2
12

2
48

2
13

3
49

7
98

9
57

3
24

5
31

1
88

9
74

4
25

1
tr

ng
::

ya
rn

5s
::

tr
ng

1
2

06
8

61
9

23
8

2
13

8
33

2
91

2
67

1
75

4
16

6
1

44
2

24
0

99
2

1
52

6
95

8
81

7
88

9
74

4
25

1

33

4 TRNG classes

static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit yarn2(parameter_type=LEcuyer1);
explicit yarn2(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit yarn2(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const yarn2 &, const yarn2 &);
bool operator!=(const yarn2 &, const yarn2 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &t, const yarn2 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn2 &);

}

namespace trng {

class yarn3 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

static const parameter_type LEcuyer3;

explicit yarn3(parameter_type=LEcuyer1);
explicit yarn3(unsigned long, parameter_type=LEcuyer1);
template<typename gen>

34

4 TRNG classes

explicit yarn3(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const yarn3 &, const yarn3 &);
bool operator!=(const yarn3 &, const yarn3 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn3 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn3 &);

}

namespace trng {

class yarn3s {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type trng0;
static const parameter_type trng1;

explicit yarn3s(parameter_type=trng0);
explicit yarn3s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit yarn3s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();

35

4 TRNG classes

long operator()(long) const;
};

bool operator==(const yarn3s &, const yarn3s &);
bool operator!=(const yarn3s &, const yarn3s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn3s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn3s &);

}

namespace trng {

class yarn4 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit yarn4(parameter_type=LEcuyer1);
explicit yarn4(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit yarn4(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const yarn4 &, const yarn4 &);
bool operator!=(const yarn4 &, const yarn4 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn4 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn4 &);

}

36

4 TRNG classes

namespace trng {

class yarn5 {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;

explicit yarn5(parameter_type=LEcuyer1);
explicit yarn5(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit yarn5(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const yarn5 &, const yarn5 &);
bool operator!=(const yarn5 &, const yarn5 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn5 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn5 &);

}

namespace trng {

class yarn5s {
public:
typedef long result_type;
result_type operator()() const;
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type trng0;
static const parameter_type trng1;

37

4 TRNG classes

explicit yarn5s(parameter_type=trng0);
explicit yarn5s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit yarn5s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long) const;

};

bool operator==(const yarn5s &, const yarn5s &);
bool operator!=(const yarn5s &, const yarn5s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn5s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn5s &);

}

4.1.4 Lagged Fibonacci generators

The template classes trng::lagfib2xor, trng::lagfib4xor, trng::lagfib2plus, trng::
lagfib4plus model random number engines (no splitting facilities) and implement lagged
Fibonacci generators with two or four feedback taps and exclusive-or or additive operation.
The recursion relation of these types of generators read

ri = ri−A ⊕ ri−B

ri = ri−A ⊕ ri−B ⊕ ri−C ⊕ ri−D

ri = ri−A + ri−B mod 2l

ri = ri−A + ri−B + ri−C + ri−D mod 2l .

These template classes are parameterized by an unsigned integer type, e. g. unsigned int
or unsigned long long, and the position of the feedback taps with A < B < C < D. For
properly chosen feedback taps the period of an exclusive-or generator is 2B − 1 or 2D − 1
respectively, and the period of an plus generator is (2B − 1)2l−1 or (2D − 1)2l−1 respectively,
where l denotes the number of significant bits of the integer type given as a template argument.
Template classes are declared in the header files trng/lagfib2xor.hpp, trng/lagfib4xor.hpp,
trng/lagfib2plus.hpp, and trng/lagfib4plus.hpp. For convenience TRNG provides some
typedefs for some realizations of lagged Fibonacci generators with two or four feedback taps.

The detailed interface of the classes trng::lagfib2xor, trng::lagfib4xor, trng::
lagfib2plus, trng::lagfib4plus is given as follows:

38

4 TRNG classes

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B>

class lagfib2xor {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib2xor();
explicit lagfib2xor(unsigned long);
template<typename gen>
explicit lagfib2xor(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib2xor<unsigned long, 103, 250> r250_ul;
typedef lagfib2xor<unsigned long long, 103, 250> r250_ull;
typedef lagfib2xor<unsigned long, 168, 521> lagfib2xor_521_ul;
typedef lagfib2xor<unsigned long long, 168, 521> lagfib2xor_521_ull;
typedef lagfib2xor<unsigned long, 273, 607> lagfib2xor_607_ul;
typedef lagfib2xor<unsigned long long, 273, 607> lagfib2xor_607_ull;
typedef lagfib2xor<unsigned long, 418, 1279> lagfib2xor_1279_ul;
typedef lagfib2xor<unsigned long long, 418, 1279> lagfib2xor_1279_ull;
typedef lagfib2xor<unsigned long, 1029, 2281> lagfib2xor_2281_ul;
typedef lagfib2xor<unsigned long long, 1029, 2281> lagfib2xor_2281_ull;
typedef lagfib2xor<unsigned long, 576, 3217> lagfib2xor_3217_ul;
typedef lagfib2xor<unsigned long long, 576, 3217> lagfib2xor_3217_ull;
typedef lagfib2xor<unsigned long, 2098, 4423> lagfib2xor_4423_ul;
typedef lagfib2xor<unsigned long long, 2098, 4423> lagfib2xor_4423_ull;
typedef lagfib2xor<unsigned long, 4187, 9689> lagfib2xor_9689_ul;
typedef lagfib2xor<unsigned long long, 4187, 9689> lagfib2xor_9689_ull;
typedef lagfib2xor<unsigned long, 9842, 19937> lagfib2xor_19937_ul;
typedef lagfib2xor<unsigned long long, 9842, 19937> lagfib2xor_19937_ull;

}

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B, unsigned int C, unsigned int D>

class lagfib4xor {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

39

4 TRNG classes

lagfib4xor();
explicit lagfib4xor(unsigned long);
template<typename gen>
explicit lagfib4xor(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib4xor<unsigned long, 471, 1586, 6988, 9689> Ziff_ul;
typedef lagfib4xor<unsigned long long, 471, 1586, 6988, 9689> Ziff_ull;
typedef lagfib4xor<unsigned long, 168, 205, 242, 521> lagfib4xor_521_ul;
typedef lagfib4xor<unsigned long long, 168, 205, 242, 521> lagfib4xor_521_ull;
typedef lagfib4xor<unsigned long, 147, 239, 515, 607> lagfib4xor_607_ul;
typedef lagfib4xor<unsigned long long, 147, 239, 515, 607> lagfib4xor_607_ull;
typedef lagfib4xor<unsigned long, 418, 705, 992, 1279> lagfib4xor_1279_ul;
typedef lagfib4xor<unsigned long long, 418, 705, 992, 1279> lagfib4xor_1279_ull;
typedef lagfib4xor<unsigned long, 305, 610, 915, 2281> lagfib4xor_2281_ul;
typedef lagfib4xor<unsigned long long, 305, 610, 915, 2281> lagfib4xor_2281_ull;
typedef lagfib4xor<unsigned long, 576, 871, 1461, 3217> lagfib4xor_3217_ul;
typedef lagfib4xor<unsigned long long, 576, 871, 1461, 3217> lagfib4xor_3217_ull;
typedef lagfib4xor<unsigned long, 1419, 1736, 2053, 4423> lagfib4xor_4423_ul;
typedef lagfib4xor<unsigned long long, 1419, 1736, 2053, 4423> lagfib4xor_4423_ull;
typedef lagfib4xor<unsigned long, 471, 2032, 4064, 9689> lagfib4xor_9689_ul;
typedef lagfib4xor<unsigned long long, 471, 2032, 4064, 9689> lagfib4xor_9689_ull;
typedef lagfib4xor<unsigned long, 3860, 7083, 11580, 19937> lagfib4xor_19937_ul;
typedef lagfib4xor<unsigned long long, 3860, 7083, 11580, 19937> lagfib4xor_19937_ull;

}

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B>

class lagfib2plus {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib2plus();
explicit lagfib2plus(unsigned long);
template<typename gen>
explicit lagfib2plus(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

40

4 TRNG classes

typedef lagfib2plus<unsigned long, 168, 521> lagfib2plus_521_ul;
typedef lagfib2plus<unsigned long long, 168, 521> lagfib2plus_521_ull;
typedef lagfib2plus<unsigned long, 273, 607> lagfib2plus_607_ul;
typedef lagfib2plus<unsigned long long, 273, 607> lagfib2plus_607_ull;
typedef lagfib2plus<unsigned long, 418, 1279> lagfib2plus_1279_ul;
typedef lagfib2plus<unsigned long long, 418, 1279> lagfib2plus_1279_ull;
typedef lagfib2plus<unsigned long, 1029, 2281> lagfib2plus_2281_ul;
typedef lagfib2plus<unsigned long long, 1029, 2281> lagfib2plus_2281_ull;
typedef lagfib2plus<unsigned long, 576, 3217> lagfib2plus_3217_ul;
typedef lagfib2plus<unsigned long long, 576, 3217> lagfib2plus_3217_ull;
typedef lagfib2plus<unsigned long, 2098, 4423> lagfib2plus_4423_ul;
typedef lagfib2plus<unsigned long long, 2098, 4423> lagfib2plus_4423_ull;
typedef lagfib2plus<unsigned long, 4187, 9689> lagfib2plus_9689_ul;
typedef lagfib2plus<unsigned long long, 4187, 9689> lagfib2plus_9689_ull;
typedef lagfib2plus<unsigned long, 9842, 19937> lagfib2plus_19937_ul;
typedef lagfib2plus<unsigned long long, 9842, 19937> lagfib2plus_19937_ull;

}

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B, unsigned int C, unsigned int D>

class lagfib4plus {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib4plus();
explicit lagfib2plus(unsigned long);
template<typename gen>
explicit lagfib4plus(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib4plus<unsigned long, 168, 205, 242, 521> lagfib4plus_521_ul;
typedef lagfib4plus<unsigned long long, 168, 205, 242, 521> lagfib4plus_521_ull;
typedef lagfib4plus<unsigned long, 147, 239, 515, 607> lagfib4plus_607_ul;
typedef lagfib4plus<unsigned long long, 147, 239, 515, 607> lagfib4plus_607_ull;
typedef lagfib4plus<unsigned long, 418, 705, 992, 1279> lagfib4plus_1279_ul;
typedef lagfib4plus<unsigned long long, 418, 705, 992, 1279> lagfib4plus_1279_ull;
typedef lagfib4plus<unsigned long, 305, 610, 915, 2281> lagfib4plus_2281_ul;
typedef lagfib4plus<unsigned long long, 305, 610, 915, 2281> lagfib4plus_2281_ull;
typedef lagfib4plus<unsigned long, 576, 871, 1461, 3217> lagfib4plus_3217_ul;
typedef lagfib4plus<unsigned long long, 576, 871, 1461, 3217> lagfib4plus_3217_ull;
typedef lagfib4plus<unsigned long, 1419, 1736, 2053, 4423> lagfib4plus_4423_ul;
typedef lagfib4plus<unsigned long long, 1419, 1736, 2053, 4423> lagfib4plus_4423_ull;
typedef lagfib4plus<unsigned long, 471, 2032, 4064, 9689> lagfib4plus_9689_ul;
typedef lagfib4plus<unsigned long long, 471, 2032, 4064, 9689> lagfib4plus_9689_ull;

41

4 TRNG classes

typedef lagfib4plus<unsigned long, 3860, 7083, 11580, 19937> lagfib4plus_19937_ul;
typedef lagfib4plus<unsigned long long, 3860, 7083, 11580, 19937> lagfib4plus_19937_ull;

}

4.2 Random number distributions

This section gives a detailed description of all random number distributions, that have been
implemented by TRNG. Each subsection presents the public interface of one random num-
ber distribution. The part of the public interface, that is mandatory for a random number
distribution, will not be discussed in detail, read section 3.2 instead.

Additionally to the requirements in section 3.2 each random number distribution class
provides a member function that calculates its probability distribution function, its cumula-
tive distribution function and in the case of continuous distributions its inverse cumulative
distribution function as well. These member functions have the signatures

double pdf(double x) const;
double cdf(double x) const;
double icdf(double x) const;

and for discrete random variables

double pdf(int x) const;
double cdf(int x) const;

The concept of a random number distribution requires two functions, that take a random
number engine as its argument and generate a random variable with some specific distribution
by calling operator() of the given random number engine. Note, the concept of a random
number distribution does not specify how often operator() is called. This allows the im-
plementer of a random number distribution to choose between various algorithms [19] that
transform uniform random numbers into non-uniform distributed numbers. Some of these
algorithms transform exactly one uniform random number into one non-uniform number,
while some other algorithms have to call operator() more than once. How often operator()
is called may even vary at runtime. If not otherwise stated, all random number distributions
in TRNG are implemented in such a way, that operator() is called exactly once. Because of
this special feature it is much more easy to write parallel Monte Carlo simulations that give
the same result (and statistical error) independent of the number of parallel processes. We say
such algorithms play fair, see section 2.3 and 6.

4.2.1 Uniform distributions

parameters a, b ∈ R with a < b
support [a, b)
mean (a + b)/2
variance (b− a)2/12

TRNG provides three different classes for generating uni-
formly distributed random numbers with distribution
function

p(x|a, b) =

{
1/(b− a) if a ≤ x < b
0 otherwise .

The class uniform_dist generates random numbers in the range [a, b). Valid parameters for
this distribution are a, b ∈ R with a < b.

42

4 TRNG classes

Many Monte Carlo simulations consume random numbers uniformly distributed in [0, 1)
that can be generated using class uniform_dist with parameters a = 0 and b = 1. However, the
uniform distribution in [0, 1) is so common that TRNG has a specialized class uniform01_dist
for this case. The class uniform01_dist might be faster than uniform_dist with parameters
a = 0 and b = 1.

Class uniform_int_dist is a variant of uniform_dist for integer valued random variables.
It provides random numbers with distribution function

p(x|a, b) =

{
1/(b− a) if a ≤ x < b
0 otherwise

for x ∈ Z.

Valid parameters for this distribution are a, b ∈ Z with a < b.
The class uniform_dist is declared in the header file trng/uniform_dist.hpp and its public

interface is given as follows:

namespace trng {

class uniform_dist {
public:
typedef double result_type;
class param_type {
public:
double a() const;
void a(double);
double b() const;
void b(double);
explicit param_type(double a, double b);

};
explicit uniform_dist(double a, double b);
explicit uniform_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &)
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double a() const;
void a(double);
double b();
void b(double);
double pdf(double x) const;
double cdf(double x) const;
double icdf(double x) const;

};

bool operator==(const uniform_dist::param_type &, const uniform_dist::param_type &);
bool operator!=(const uniform_dist::param_type &, const uniform_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_dist::param_type &);
template<typename char_t, typename traits_t>

43

4 TRNG classes

std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_dist::param_type &);

bool operator==(const uniform_dist &, const uniform_dist &);
bool operator!=(const uniform_dist &, const uniform_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_dist &);

}

The class uniform01_dist is declared in the header file trng/uniform01_dist.hpp and its
public interface is given as follows:

namespace trng {

class uniform01_dist {
public:
typedef double result_type;
class param_type;
explicit uniform01_dist();
explicit uniform01_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double pdf(double x) const;
double cdf(double x) const;
double icdf(double x) const;

};

bool operator==(const uniform01_dist::param_type &, const uniform01_dist::param_type &);
bool operator!=(const uniform01_dist::param_type &, const uniform01_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform01_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform01_dist::param_type &);

bool operator==(const uniform01_dist &, const uniform01_dist &);
bool operator!=(const uniform01_dist &, const uniform01_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform01_dist &)
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform01_dist &);

44

4 TRNG classes

}

The class uniform_int_dist is declared in the header file trng/uniform_int_dist.hpp and
its public interface is given as follows:

namespace trng {

class uniform_int_dist {
public:
typedef int result_type;
class param_type {
public:
int a() const;
void a(int);
int b() const;
void b(int);
explicit param_type(int a, int b);

};
explicit uniform_int_dist(int a, int b);
explicit uniform_int_dist(const param_type &)
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
int a() const;
void a(int);
int b() const;
void b(int);
double pdf(int x) const;
double cdf(int x) const;

};

bool operator==(const uniform_int_dist::param_type &, const uniform_int_dist::param_type &);
bool operator!=(const uniform_int_dist::param_type &, const uniform_int_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_int_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_int_dist::param_type &);

bool operator==(const uniform_int_dist &, const uniform_int_dist &);
bool operator!=(const uniform_int_dist &, const uniform_int_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_int_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_int_dist &);

}

45

4 TRNG classes

4.2.2 Exponential distribution

parameter µ ∈ R with µ > 0
support [0, ∞)
mean µ
variance µ2

Class exponential_dist provides random numbers
with exponential distribution with mean µ. The proba-
bility distribution function reads

p(x|µ) =

{
1
µ e−x/µ if x ≥ 0

0 otherwise .

Valid parameter for this distribution is µ ∈ R with µ > 0.
The class exponential_dist is declared in the header file trng/exponential_dist.hpp and

its public interface is given as follows:

namespace trng {

class exponential_dist {
public:
typedef double result_type;
class param_type {
public:
double mu() const;
void mu(double);
explicit param_type(double mu);

};
explicit exponential_dist(double mu);
explicit exponential_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double mu() const;
void mu(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const exponential_dist::param_type &, const exponential_dist::param_type &);
bool operator!=(const exponential_dist::param_type &, const exponential_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const exponential_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, exponential_dist::param_type &);

bool operator==(const exponential_dist &, const exponential_dist &);
bool operator!=(const exponential_dist &, const exponential_dist &);

template<typename char_t, typename traits_t>

46

4 TRNG classes

std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const exponential_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, exponential_dist &);

}

4.2.3 Normal distribution

parameters µ, σ ∈ R, with σ > 0
support (−∞, ∞)
mean µ
variance σ2

There are two classes for producing random numbers
with normal distribution, normal_dist and correlated_
normal_dist. Class normal_dist provides uncorrelated
random numbers with normal distribution with mean µ
and standard deviation σ. The probability distribution
function reads

p(x|µ, σ) =
1√

2πσ2
e−(x−µ)2/(2σ2) .

Valid parameters for this distribution are µ, σ ∈ R with σ > 0. The normal distribution is also
known as Gaussian distribution.

The class normal_dist is declared in the header file trng/normal_dist.hpp and its public
interface is given as follows:

namespace trng {

class normal_dist {
public:
typedef double result_type;
class param_type {
public:
double mu() const;
void mu(double);
double sigma() const;
void sigma(double);
param_type(double mu, double sigma);

};
normal_dist(double mu, double sigma);
explicit normal_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double mu() const;
void mu(double);
double sigma() const;
void sigma(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

47

4 TRNG classes

bool operator==(const normal_dist::param_type &, const normal_dist::param_type &);
bool operator!=(const normal_dist::param_type &, const normal_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const normal_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, normal_dist::param_type &);

bool operator==(const normal_dist &, const normal_dist &);
bool operator!=(const normal_dist &, const normal_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const normal_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, normal_dist &);

}

If x = (x1, x2, . . . xd) are d random variables, then the multivariate normal density function
for x is

p(x|V) =
1√

(2π)d det V
exp

(
−1

2
xTV−1x

)
. (4.1)

Each variable x1, x2, . . . xd has mean zero and the the covariance matrix of x1, x2, . . . xd is given
by the symmetric positive definite d× d matrix V. Class correlated_normal_dist provides
correlated random numbers with normal distribution by the transformation of uncorrelated
random numbers [8].

The class normal_dist is declared in the header file trng/normal_dist.hpp and its public
interface is given as follows:

namespace trng {

class correlated_normal_dist {
public:
typedef double result_type;
class param_type {
public:
template<typename iter>
param_type(iter first, iter last);

};
template<typename iter>
correlated_normal_dist(iter first, iter last);
explicit correlated_normal_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &p_new);

};

48

4 TRNG classes

bool operator==(const correlated_normal_dist::param_type &,
const correlated_normal_dist::param_type &);

bool operator!=(const correlated_normal_dist::param_type &,
const correlated_normal_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const correlated_normal_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, correlated_normal_dist::param_type &);

bool operator==(const correlated_normal_dist &, const correlated_normal_dist &);
bool operator!=(const correlated_normal_dist &, const correlated_normal_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const correlated_normal_dist &);

template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, correlated_normal_dist &);

}

The covariance matrix V has to be passed to the constructor of correlated_normal_dist by
two iterators. It is not checked, if the matrix is positive definite. The call operator operator()
returns a single random number and has complexity O (d). As a consequence, the generation
of a tuple of d correlated random numbers takes O

(
d2) operations.

Successive calls return random numbers with variance V1,1, V2,2 and so on, until the
operator() has been called d times, which returns a random number with variance Vd,d.
A sequence of further calls of operator() will return random numbers with the same se-
quences of variances. The method reset resets the internal state of the distribution such
that, of further calls of operator() will return random numbers starting with a number with
variance V1,1. Listing 4.1 illustrates the usage of class correlated_normal_dist.

Listing 4.1: Demonstration program illustrating the usage of correlated_normal_dist.
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <vector>
#include <trng/lcg64.hpp>
#include <trng/correlated_normal_dist.hpp>

double covariance(const std::vector<double> &v1, const std::vector<double> &v2) {
std::vector<double>::size_type n=v1.size();
double m1=0.0, m2=0.0, c=0.0;
for (std::vector<double>::size_type i=0; i<n; ++i) {
m1+=v1[i]/n; m2+=v2[i]/n;

}
for (std::vector<double>::size_type i=0; i<n; ++i)
c+=(v1[i]-m1)*(v2[i]-m2)/n;

return c;
}

49

4 TRNG classes

int main() {
const int d=4;
// covariance matrix
double sig[d][d] = { { 2.0, -0.5, 0.3, -0.3},

{-0.5, 3.0, -0.3, 0.3},
{ 0.3, -0.3, 1.0, -0.3},
{-0.3, 0.3, -0.3, 1.0} };

trng::correlated_normal_dist D(&sig[0][0], &sig[d-1][d-1]+1);
trng::lcg64 R;

std::vector<double> x1, x2, x3, x4;
// generate 4−tuples of correlated normal variables
for (int i=0; i<1000000; ++i) {
x1.push_back(D(R)); x2.push_back(D(R)); x3.push_back(D(R)); x4.push_back(D(R));

}
// print (empirical) covariance matrix
std::cout << std::setprecision(4)

<< covariance(x1, x1) << ’\t ’ << covariance(x1, x2) << ’\t ’
<< covariance(x1, x3) << ’\t ’ << covariance(x1, x4) << ’\n ’
<< covariance(x2, x1) << ’\t ’ << covariance(x2, x2) << ’\t ’
<< covariance(x2, x3) << ’\t ’ << covariance(x2, x4) << ’\n ’
<< covariance(x3, x1) << ’\t ’ << covariance(x3, x2) << ’\t ’
<< covariance(x3, x3) << ’\t ’ << covariance(x3, x4) << ’\n ’
<< covariance(x4, x1) << ’\t ’ << covariance(x4, x2) << ’\t ’
<< covariance(x4, x3) << ’\t ’ << covariance(x4, x4) << ’\n ’;

return EXIT_SUCCESS;
}

4.2.4 Cauchy distribution

parameters θ, η ∈ R, with θ > 0
support (−∞, ∞)
mean not defined
variance not defined

Class cauchy_dist provides random numbers with
Cauchy distribution with parameters θ and η. The prob-
ability distribution function reads

p(x|θ, η) =
1

θπ

(
1 +

(
x−η

θ

)2
) .

Valid parameters for this distribution are θ, η ∈ R with θ > 0. The Cauchy distribution is also
know as Lorentz distribution or Breit-Wigner distribution.

The class cauchy_dist is declared in the header file trng/cauchy_dist.hpp and its public
interface is given as follows:

namespace trng {

class cauchy_dist {
public:
typedef double result_type;
class param_type {
public:
double theta() const;
void theta(double);
double eta() const;
void eta(double);

50

4 TRNG classes

explicit param_type(double theta, double eta);
};
explicit cauchy_dist(double theta, double eta);
explicit cauchy_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double theta() const;
void theta(double);
double eta() const;
void eta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const cauchy_dist::param_type &, const cauchy_dist::param_type &);
bool operator!=(const cauchy_dist::param_type &, const cauchy_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const cauchy_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, cauchy_dist::param_type &);

bool operator==(const cauchy_dist &, const cauchy_dist &);
bool operator!=(const cauchy_dist &, const cauchy_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const cauchy_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, cauchy_dist &);

}

4.2.5 Logistic distribution

parameters θ, η ∈ R, with θ > 0
support (−∞, ∞)
mean η
variance π2θ2/3

Class logistic_dist provides random numbers with
Logistic distribution with parameters θ and η. The prob-
ability distribution function reads

p(x|θ, η) =
e−(x−η)/θ

θ
(
1 + e−(x−η)/θ

)2 .

Valid parameters for this distribution are θ, η ∈ R with θ > 0.
The class logistic_dist is declared in the header file trng/logistic_dist.hpp and its

public interface is given as follows:

51

4 TRNG classes

namespace trng {

class logistic_dist {
public:
typedef double result_type;
class param_type {
public:
double theta() const;
void theta(double);
double eta() const;
void eta(double);
explicit param_type(double theta, double eta);

};
explicit logistic_dist(double theta, double eta);
explicit logistic_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double theta() const;
void theta(double);
double eta() const;
void eta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const logistic_dist::param_type &, const logistic_dist::param_type &);
bool operator!=(const logistic_dist::param_type &, const logistic_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const logistic_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, logistic_dist::param_type &);

bool operator==(const logistic_dist &, const logistic_dist &);
bool operator!=(const logistic_dist &, const logistic_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const logistic_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, logistic_dist &);

}

52

4 TRNG classes

4.2.6 Lognormal distribution

parameters µ, σ ∈ R, with σ > 0
support (0, ∞)
mean eµ+σ2/2

variance (eσ2 − 1)eµ/2+σ2

Class lognormal_dist provides random numbers with
lognormal distribution with parameters µ and σ. The
probability distribution function reads

p(x|µ, σ) =


0 for x ≤ 0

1

x
√

2πσ2
e−(ln x−µ)2/(2σ2) for x > 0 .

Valid parameters for this distribution are µ, σ ∈ R with σ > 0.
The class lognormal_dist is declared in the header file trng/lognormal_dist.hpp and its

public interface is given as follows:

namespace trng {

class lognormal_dist {
public:
typedef double result_type;
class param_type {
public:
double mu() const;
void mu(double);
double sigma() const;
void sigma(double);
explicit param_type(double mu, double sigma);

};
explicit lognormal_dist(double mu, double sigma);
explicit lognormal_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double mu() const;
void mu(double);
double sigma() const;
void sigma(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const lognormal_dist::param_type &, const lognormal_dist::param_type &);
bool operator!=(const lognormal_dist::param_type &, const lognormal_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lognormal_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lognormal_dist::param_type &);

53

4 TRNG classes

bool operator==(const lognormal_dist &, const lognormal_dist &);
bool operator!=(const lognormal_dist &, const lognormal_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lognormal_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lognormal_dist &);

}

4.2.7 Pareto distribution

parameters θ, γ ∈ (0, ∞)
support [0, ∞)
mean θ/(γ− 1)

variance
θ2γ

(γ− 1)2(γ− 2)

The mean and the variance are de-
fined only if γ > 1 and γ > 2, re-
spectively.

Class pareto_dist provides random numbers with
Pareto distribution with parameters γ and θ. The prob-
ability distribution function reads

p(x|γ, θ) =


0 for x < 0

γ

θ

(
1 +

x
θ

)−γ−1
for x ≥ 0 .

Valid parameters for this distribution are γ, θ ∈ R with
γ > 0 and θ > 0. Actually in mathematics literature one
can find two different kinds of probability distributions, that are referred as Pareto distribution.
Section 4.2.8 introduces another probability distribution that is also sometimes called Pareto
distribution.

The class pareto_dist is declared in the header file trng/pareto_dist.hpp and its public
interface is given as follows:

namespace trng {

class pareto_dist {
public:
typedef double result_type;
class param_type {
public:
double gamma() const;
void gamma(double);
double theta() const;
void theta(double);
explicit param_type(double gamma, double theta);

};
explicit pareto_dist(double gamma, double theta);
explicit pareto_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;

54

4 TRNG classes

void param(const param_type &);
double gamma() const;
void gamma(double);
double theta() const;
void theta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const pareto_dist::param_type &, const pareto_dist::param_type &);
bool operator!=(const pareto_dist::param_type &, const pareto_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const pareto_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, pareto_dist::param_type &);

bool operator==(const pareto_dist &, const pareto_dist &);
bool operator!=(const pareto_dist &, const pareto_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const pareto_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, pareto_dist &);

}

4.2.8 Power-law distribution

parameters θ, γ ∈ (0, ∞)
support [θ, ∞)
mean γθ/(γ− 1)

variance
θ2γ

(γ− 1)2(γ− 2)

The mean and the variance are de-
fined only if γ > 1 and γ > 2, re-
spectively.

Class powerlaw_dist provides random numbers with
power-law distribution with parameters γ and θ. This
distribution is related to the Pareto distribution and its
probability distribution function reads

p(x|γ, θ) =


0 for x < θ

γ

θ

(x
θ

)−γ−1
for x ≥ θ .

Valid parameters for this distribution are γ, θ ∈ R with
γ > 0 and θ > 0.

The class powerlaw_dist is declared in the header file trng/powerlaw_dist.hpp and its
public interface is given as follows:

namespace trng {

class powerlaw_dist {
public:
typedef double result_type;
class param_type {
public:

55

4 TRNG classes

double gamma() const;
void gamma(double);
double theta() const;
void theta(double);
explicit param_type(double gamma, double theta);

};
explicit powerlaw_dist(double gamma, double theta);
explicit powerlaw_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double gamma() const;
void gamma(double);
double theta() const;
void theta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const powerlaw_dist::param_type &, const powerlaw_dist::param_type &);
bool operator!=(const powerlaw_dist::param_type &, const powerlaw_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const powerlaw_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, powerlaw_dist::param_type &);

bool operator==(const powerlaw_dist &, const powerlaw_dist &);
bool operator!=(const powerlaw_dist &, const powerlaw_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const powerlaw_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, powerlaw_dist &);

}

56

4 TRNG classes

4.2.9 Tent distribution

parameters m, d ∈ R, d > 0
support (m− d, m + d)
mean m
variance d2/6

Class tent_dist provides random numbers with tent
distribution with parameters m and d. This distribution
is symmetric around m and its support is the interval
(m − d, m + d). The probability distribution function
reads

p(x|m, d) =


1 + (x−m)/d

d
for m− d ≤ x ≤ m

1− (x−m)/d
d

for m ≤ x ≤ m + d

0 else .

Valid parameters for this distribution are m, d ∈ R with d > 0.
The class tent_dist is declared in the header file trng/tent_dist.hpp and its public inter-

face is given as follows:

namespace trng {

class tent_dist {
public:
typedef double result_type;
class param_type {
public:
double m() const;
void m(double);
double d() const;
void d(double);
explicit param_type(double m, double d);

};
explicit tent_dist(double m, double d);
explicit tent_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double m() const;
void m(double);
double d() const;
void d(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const tent_dist::param_type &, const tent_dist::param_type &);
bool operator!=(const tent_dist::param_type &, const tent_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const tent_dist::param_type &);

57

4 TRNG classes

template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, tent_dist::param_type &);

bool operator==(const tent_dist &, const tent_dist &);
bool operator!=(const tent_dist &, const tent_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const tent_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, tent_dist &);

}

4.2.10 Weibull distribution

parameters β, θ ∈ (0, ∞)
support (0, ∞)
mean θΓ

(
1 + 1

β

)
variance θ2

[
Γ
(

1 + 2
β

)
− Γ2

(
1 + 1

β

)]

Class weibull_dist provides random numbers
with Weibull distribution with parameters β and
θ. The probability distribution function reads

p(x|β, θ) =


0 for x < θ

β

θ

(x
θ

)β−1
e−(x/θ)β

for x ≥ θ .

Valid parameters for this distribution are β, θ ∈ R with β > 0 and θ > 0. For β = 1 Weibull
distribution degenerates to an exponential distribution and for β = 2 and θ =

√
2 · σ this

distribution is also known as Rayleigh distribution with parameter σ.
The class weibull_dist is declared in the header file trng/weibull_dist.hpp and its public

interface is given as follows:

namespace trng {

class weibull_dist {
public:
typedef double result_type;
class param_type {
public:
double beta() const;
void beta(double);
double theta() const;
void theta(double);
explicit param_type(double beta, double theta);

};
explicit weibull_dist(double beta, double theta);
explicit weibull_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;

58

4 TRNG classes

void param(const param_type &);
double beta() const;
void beta(double);
double theta() const;
void theta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const weibull_dist::param_type &, const weibull_dist::param_type &);
bool operator!=(const weibull_dist::param_type &, const weibull_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const weibull_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, weibull_dist::param_type &);

bool operator==(const weibull_dist &, const weibull_dist &);
bool operator!=(const weibull_dist &, const weibull_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const weibull_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, weibull_dist &);

}

4.2.11 Extreme value distribution

parameters θ, η ∈ R, θ > 0
support (−∞, ∞)
mean η − γθ
variance π2θ2/6

γ denotes the Euler-Mascheroni
constant γ = 0.57721 . . .

Class extreme_value_dist provides random numbers
with extreme value distribution (also known as Gumbel
distribution) with parameters θ and η. The probability
distribution function reads

p(x|θ, η) =
1
θ

exp
(

x− η

θ
− exp

x− η

θ

)
.

Valid parameters for this distribution are θ, η ∈ R with θ > 0.
The class extreme_value_dist is declared in the header file trng/extreme_value_dist.hpp

and its public interface is given as follows:

namespace trng {

class extreme_value_dist {
public:
typedef double result_type;
class param_type {
public:
double theta() const;
void theta(double);
double eta() const;

59

4 TRNG classes

void eta(double);
explicit param_type(double theta, double eta);

};
explicit extreme_value_dist(double theta, double eta);
explicit extreme_value_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double theta() const;
void theta(double);
double eta() const;
void eta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const extreme_value_dist::param_type &,
const extreme_value_dist::param_type &);

bool operator!=(const extreme_value_dist::param_type &,
const extreme_value_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const extreme_value_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, extreme_value_dist::param_type &);

bool operator==(const extreme_value_dist &, const extreme_value_dist &);
bool operator!=(const extreme_value_dist &, const extreme_value_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const extreme_value_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, extreme_value_dist &);

}

4.2.12 Γ-distribution

parameters κ, θ ∈ (0, ∞)
support [0, ∞)
mean κθ
variance κθ2

Class gamma_dist provides random numbers with Γ-distri-
bution with parameters θ and κ. The probability distribution
function reads

p(x|θ, κ) =


0 if x < 0

1
θΓ(κ)

(x
θ

)κ−1
e−x/θ if x ≥ 0 .

60

4 TRNG classes

Valid parameters for this distribution are κ, θ ∈ R with κ ≥ 1 and θ > 0. Note, Γ-distribution
is defined for arbitrary κ ≥ 0, but class gamma_dist can handle only Γ-distributions with κ ≥ 1
correctly. For κ = 1 Γ-distribution degenerates to an exponential distribution.

The class gamma_dist is declared in the header file trng/gamma_dist.hpp and its public
interface is given as follows:

namespace trng {

class gamma_dist {
public:
typedef double result_type;
class param_type {
public:
double kappa() const;
void kappa(double);
double theta() const;
void theta(double);
explicit param_type(double kappa, double theta);

};
explicit gamma_dist(double kappa, double theta);
explicit gamma_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
double kappa() const;
void kappa(double);
double theta() const;
void theta(double);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const gamma_dist::param_type &, const gamma_dist::param_type &);
bool operator!=(const gamma_dist::param_type &, const gamma_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const gamma_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, gamma_dist::param_type &);

bool operator==(const gamma_dist &, const gamma_dist &);
bool operator!=(const gamma_dist &, const gamma_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const gamma_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &

61

4 TRNG classes

operator>>(std::basic_istream<char_t, traits_t> &, gamma_dist &);
}

4.2.13 χ2-distribution

parameter ν ∈N

support (0, ∞)
mean ν
variance 2ν

Class chi_square_dist provides random numbers with χ2-distri-
bution with ν degrees of freedom. The probability distribution
function reads

p(x|ν) =


0 if x < 0

xν/2−1e−x/2

2ν/2 Γ(ν/2)
if x ≥ 0 .

A valid parameter for this distribution is ν ∈N with ν ≥ 1. Note, χ2-distribution is a special
case of Γ-distribution with κ = ν/2 and θ = 2.

The class chi_square_dist is declared in the header file trng/chi_square_dist.hpp and
its public interface is given as follows:

namespace trng {

class chi_square_dist {
public:
typedef double result_type;
class param_type {
public:
int nu() const;
void nu(int);
explicit param_type(int nu);

};
explicit chi_square_dist(int nu);
explicit chi_square_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
int nu() const;
void nu(int);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const chi_square_dist::param_type &, const chi_square_dist::param_type &);
bool operator!=(const chi_square_dist::param_type &, const chi_square_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const chi_square_dist::param_type &);
template<typename char_t, typename traits_t>

62

4 TRNG classes

std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, chi_square_dist::param_type &);

bool operator==(const chi_square_dist &, const chi_square_dist &);
bool operator!=(const chi_square_dist &, const chi_square_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const chi_square_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, chi_square_dist &);

}

4.2.14 Student-t-distribution

parameter ν ∈N

support (−∞, ∞)
mean 0
variance ν−1

ν−3

Class student_t_dist provides random numbers with Student-t-
distribution with ν degrees of freedom. The probability distribution
function reads

p(x|ν) =
Γ(ν+1

2)√
νπ Γ(ν

2)

(
1 +

x2

ν

)−(ν+1
2)

.

A valid parameter for this distribution is ν ∈N with ν ≥ 1.
The class student_t_dist is declared in the header file trng/student_t_dist.hpp and its

public interface is given as follows:

namespace trng {

class student_t_dist {
public:
typedef double result_type;
class param_type {
public:
int nu() const;
void nu(int);
explicit param_type(int nu);

};
explicit student_t_dist(int nu);
explicit student_t_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
int nu() const;
void nu(int);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

63

4 TRNG classes

bool operator==(const student_t_dist::param_type &, const student_t_dist::param_type &);
bool operator!=(const student_t_dist::param_type &, const student_t_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const student_t_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, student_t_dist::param_type &);

bool operator==(const student_t_dist &, const student_t_dist &);
bool operator!=(const student_t_dist &, const student_t_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const student_t_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, student_t_dist &);

}

4.2.15 Snedecor-F-distribution

parameter n, m ∈N

support [0, ∞)
mean m

m−2

variance 2m2(m+n−2)
n(m−2)2(m−4)

Class snedecor_fsnedecor_f_dist provides random num-
bers with Snedecor-F-distribution (or Fisher-Snedecor distri-
bution) with parameters n and m. The probability distribution
function reads

p(x|n, m) =


0 if x < 0

Γ((n + m)/2)
Γ(n/2)Γ(m/2)

nn/2mm/2xn/2−1

(m + nx)(n+m)/2
if x ≥ 0 .

Valid parameters for this distribution are n, m ∈N with n, m ≥ 1.
The class snedecor_f_dist is declared in the header file trng/snedecor_f_dist.hpp and

its public interface is given as follows:

namespace trng {

class snedecor_f_dist {
public:
typedef double result_type;
class param_type {
public:
int n() const;
void n(int);
int m() const;
void m(int);
explicit param_type(int n, int m);

};
explicit snedecor_f_dist(int n, int m);
explicit snedecor_f_dist(const param_type &);
void reset();
template<typename R>

64

4 TRNG classes

double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const;
void param(const param_type &);
int n() const;
void n(int);
int m() const;
void m(int);
double pdf(double) const;
double cdf(double) const;
double icdf(double) const;

};

bool operator==(const snedecor_f_dist::param_type &, const snedecor_f_dist::param_type &);
bool operator!=(const snedecor_f_dist::param_type &, const snedecor_f_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const snedecor_f_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, snedecor_f_dist::param_type &);

bool operator==(const snedecor_f_dist &, const snedecor_f_dist &);
bool operator!=(const snedecor_f_dist &, const snedecor_f_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const snedecor_f_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, snedecor_f_dist &);

}

4.2.16 Rayleigh distribution

parameter ν ∈ (0, ∞)
support (0, ∞)
mean ν

√
π/2

variance (4− π)ν2/2

Class rayleigh_dist provides random numbers with
Rayleigh distribution with parameter ν. The probability
distribution function reads

p(x|ν) =

0 if x ≤ 0
x
ν2 e−x2/(2ν2) if x > 0 .

A valid parameter for this distribution is ν > 0.
The class rayleigh_dist is declared in the header file trng/rayleigh_dist.hpp and its

public interface is given as follows:

namespace trng {

class rayleigh_dist {
public:

65

4 TRNG classes

typedef double result_type;
class param_type {
public:
double nu() const;
void nu(double nu_new);
explicit param_type(double nu);
friend class rayleigh_dist;

};

explicit rayleigh_dist(double nu);
explicit rayleigh_dist(const param_type &);
void reset();
template<typename R>
double operator()(R &);
template<typename R>
double operator()(R &, const param_type &);
double min() const;
double max() const;
param_type param() const { return p; }
void param(const param_type &);
double nu() const;
void nu(double);
double pdf(double x) const;
double cdf(double x) const;
double icdf(double x) const;

};

bool operator==(const rayleigh_dist::param_type &, const rayleigh_dist::param_type &);
bool operator!=(const rayleigh_dist::param_type &, const rayleigh_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const rayleight_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, rayleight_dist::param_type &);

bool operator==(const rayleigh_dist &, const rayleigh_dist &);
bool operator!=(const rayleigh_dist &, const rayleigh_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const rayleigh_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, rayleigh_dist &);

}

4.2.17 Bernoulli distribution

parameter p ∈ [0, 1]
support 0, 1
mean p/2
variance p2/12

The template class bernoulli_dist provides random objects with
Bernoulli distribution with parameter p. The probability distribu-

66

4 TRNG classes

tion function reads

P(x|p) =


p if x = 0 (head)
1− p if x = 1 (tail)
0 else .

A valid parameter for this distribution is p ∈ [0, 1].
The class bernoulli_dist is declared in the header file trng/bernoulli_dist.hpp and its

public interface is given as follows:

namespace trng {

template<typename T>
class bernoulli_dist {
public:
typedef T result_type;

class param_type {
public:
double p() const;
void p(double);
T head() const;
void head(const T &);
T tail() const;
void tail(const T &);
explicit param_type(double p, const T &head, const T &tail);

};

explicit bernoulli_dist(double p, const T &head, const T &tail);
explicit bernoulli_dist(const param_type &);
void reset();
template<typename R>
T operator()(R &);
template<typename R>
T operator()(R &, const param_type &);

Method min returns “head” and method max returns “tail”.

T min() const;
T max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
T head() const;
void head(const T &);
T tail() const;
void tail(const T &);

Method pdf will return p if its argument is “head”, 1 − p if its argument is “tail” and 0
otherwise.

double pdf(const T &) const;

Method cdf will return p if its argument is “head”, 1 if its argument is “tail” and 0 otherwise.

double cdf(const T &) const;
};

67

4 TRNG classes

template<typename T>
bool operator==(const typename bernoulli_dist<T>::param_type &,

const typename bernoulli_dist<T>::param_type &);
template<typename T>
bool operator!=(const typename bernoulli_dist<T>::param_type &,

const typename bernoulli_dist<T>::param_type &);

template<typename char_t, typename traits_t, typename T>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,

const typename bernoulli_dist<T>::param_type &);
template<typename char_t, typename traits_t, typename T>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,

typename bernoulli_dist<T>::param_type &);

template<typename T>
bool operator==(const bernoulli_dist<T> &, const bernoulli_dist<T> &);
template<typename T>
bool operator!=(const bernoulli_dist<T> &, const bernoulli_dist<T> &);

template<typename char_t, typename traits_t, typename T>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const bernoulli_dist<T> &);
template<typename char_t, typename traits_t, typename T>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, bernoulli_dist<T> &);

}

4.2.18 Binomial distribution

parameters p ∈ [0, 1], n ∈N

support 0, 1, . . . , n
mean np
variance np(1− p)

Class binomial_dist provides random integers with bi-
nomial distribution with parameters p and n. The prob-
ability distribution function reads

P(x|p, n) =


(

n
x

)
px(1− p)n−x if x ∈ {0, 1, . . . , n}

0 else .

Valid parameters for this distribution are p ∈ [0, 1] and n ∈N.
The class binomial_dist is declared in the header file trng/binomial_dist.hpp and its

public interface is given as follows:

namespace trng {

class binomial_dist {
public:
typedef int result_type;

class param_type {
public:
double p() const;
void p(double);

68

4 TRNG classes

Listing 4.2: Class bernoulli_dist in action.
1 #include <cstdlib>
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <trng/lcg64.hpp>
6 #include <trng/bernoulli_dist.hpp>
7
8 typedef enum { head=0, tail=1 } coin;
9

10 int main() {
11 // discrete distribution object
12 trng::bernoulli_dist<coin> biased_coin(0.51, head, tail);
13 // random number generator
14 trng::lcg64 r;
15 // draw some random numbers
16 std::vector<int> count(2, 0);
17 const int samples=100000;
18 for (int i=0; i<samples; ++i) {
19 int x=biased_coin(r); // draw a random number
20 ++count[x]; // count
21 }
22 // print results
23 std::cout << "value\t\tprobability\tcount\t\tempirical probability\n"
24 << "=====\t\t===========\t=====\t\t=====================\n";
25 for (std::vector<int>::size_type i=0; i<count.size(); ++i)
26 std::cout << std::setprecision(3)
27 << i << "\t\t "
28 << biased_coin.pdf(static_cast<coin>(i)) << "\t\t "
29 << count[i] << "\t\t "
30 << static_cast<double>(count[i])/samples << ’\n ’;
31 return EXIT_SUCCESS;
32 }

int n() const;
void n(int);
explicit param_type(double p, int n);

};

explicit binomial_dist(double p, int n);
explicit binomial_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
int n() const;
void n(int);

69

4 TRNG classes

double pdf(int) const;
double cdf(int) const;

};

bool operator==(const binomial_dist::param_type &, const binomial_dist::param_type &);
bool operator!=(const binomial_dist::param_type &, const binomial_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const binomial_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, binomial_dist::param_type &);

bool operator==(const binomial_dist &, const binomial_dist &);
bool operator!=(const binomial_dist &, const binomial_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const binomial_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, binomial_dist &);

}

4.2.19 Geometric distribution

parameter p ∈ (0, 1)
support 0, 1, . . .
mean (1− p)/p
variance (1− p)/p2

Class geometric_dist provides random integers with geometric
distribution with parameter p. The probability distribution function
reads

P(x|p) = p(1− p)x for x ∈ {0, 1, . . . }.

A valid parameter p is p ∈ (0, 1).
The class geometric_dist is declared in the header file trng/geometric_dist.hpp and its

public interface is given as follows:

namespace trng {

class geometric_dist {
public:
typedef int result_type;

class param_type {
public:
double p() const;
void p(double);
explicit param_type(double p);

};

explicit geometric_dist(double p);
explicit geometric_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>

70

4 TRNG classes

int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const geometric_dist::param_type &, const geometric_dist::param_type &);
bool operator!=(const geometric_dist::param_type &, const geometric_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const geometric_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, geometric_dist::param_type &);

bool operator==(const geometric_dist &, const geometric_dist &);
bool operator!=(const geometric_dist &, const geometric_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const geometric_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, geometric_dist &);

}

4.2.20 Poisson distribution

parameter µ ∈ [0, ∞)
support 0, 1, . . .
mean µ
variance µ

Class poisson_dist provides random integers with poisson distri-
bution with mean µ. The probability distribution function reads

P(x|µ) =
e−µµx

x!
for x ∈ {0, 1, . . . }.

A valid parameter µ is µ ∈ [0, ∞).
The class poisson_dist is declared in the header file trng/poisson_dist.hpp and its public

interface is given as follows:

namespace trng {

class poisson_dist {
public:
typedef int result_type;

class param_type {
public:
double mu() const;
void mu(double);
explicit param_type(double mu);

};

71

4 TRNG classes

explicit poisson_dist(double mu);
explicit poisson_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double mu() const;
void mu(double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const poisson_dist::param_type &, const poisson_dist::param_type &);
bool operator!=(const poisson_dist::param_type &, const poisson_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const poisson_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, poisson_dist::param_type &);

bool operator==(const poisson_dist &, const poisson_dist &);
bool operator!=(const poisson_dist &, const poisson_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const poisson_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, poisson_dist &);

}

4.2.21 Discrete distribution

The general probability distribution function for integers in [0, 1, . . . , n− 1] is determined by a
set of n non-negative weights pi (i = 0, 1, . . . , n− 1) and reads

P(x|{pi}) =
px

∑n−1
i=0 pi

for x ∈ {0, 1, . . . , n− 1}.

TRNG provides two classes for the generation of random integers with a general discrete
distribution, class discrete_dist and fast_discrete_dist. Both classes provide basically
the same interface but they are implemented by different internal data structures and feature
different performance characteristics.

The classes discrete_dist and fast_discrete_dist have several different construc-
tors. The constructor discrete_dist(int n) (fast_discrete_dist(int n)) sets up a flat
distribution of n integers, each integer has the same statistical weight. Another way

72

4 TRNG classes

to construct an object of the class discrete_dist (fast_discrete_dist) is to pass the
weights pi to the constructor discrete_dist(iter first, iter last); (fast_discrete_
dist(iter first, iter last);) by some iterator range.

Drawing a random number from a general discrete distribution is a O (log n) operation for
discrete_dist, while fast_discrete_dist is able to carryout this operation in constant time.
For small n the performance difference is negligible, but for large n (n ' 1 000) becomes more
and more important and therefore fast_discrete_dist will be used in most cases.

The method param(int, double) allows to change relative probability of a single relative
probability pi after an object of the type discrete_dist has been constructed. This will
cause an update of the internal data structures that costs O (log n) operation. Note that
fast_discrete_dist does not allow to change relative probabilities and does not provide a
method param(int, double). This is the price we have to pay for performance.

The class discrete_dist is declared in the header file trng/discrete_dist.hpp and its
public interface is given as follows:

namespace trng {

class discrete_dist {
public:
typedef int result_type;
class param_type {
public:
template<typename iter>
explicit param_type(iter first, iter last);

};

discrete_dist(int n);
template<typename iter>
discrete_dist(iter first, iter last);
explicit discrete_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
void param(int, double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const discrete_dist::param_type &, const discrete_dist::param_type &);
bool operator!=(const discrete_dist::param_type &, const discrete_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const discrete_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, discrete_dist::param_type &);

bool operator==(const discrete_dist &, const discrete_dist &);

73

4 TRNG classes

bool operator!=(const discrete_dist &, const discrete_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const discrete_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, discrete_dist &);

}

The files discrete_dist.cc (see Listing 4.3) and discrete_dist_c_style.cc in the TRNG
source distribution demonstrate the usage of the class discrete_dist in detail.

The class fast_discrete_dist is declared in the header file trng/fast_discrete_dist.hpp
and its public interface is given as follows:

namespace trng {

class fast_discrete_dist {
public:
typedef int result_type;
class param_type {
public:
template<typename iter>
explicit param_type(iter first, iter last);

};

fast_discrete_dist(int n);
template<typename iter>
fast_discrete_dist(iter first, iter last);
explicit fast_discrete_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const fast_fast_discrete_dist::param_type &, const fast_discrete_dist::param_type &);
bool operator!=(const fast_discrete_dist::param_type &, const fast_discrete_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const fast_discrete_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, fast_discrete_dist::param_type &);

bool operator==(const fast_discrete_dist &, const fast_discrete_dist &);
bool operator!=(const fast_discrete_dist &, const fast_discrete_dist &);

74

4 TRNG classes

Listing 4.3: Class discrete_dist in action.
1 #include <cstdlib>
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <trng/lcg64.hpp>
6 #include <trng/discrete_dist.hpp>
7
8 int main() {
9 std::vector<double> p; // stores relative probabilities

10 // populate vector with relative probabilities
11 p.push_back(1);
12 p.push_back(3.25);
13 p.push_back(5);
14 p.push_back(6.5);
15 p.push_back(7);
16 p.push_back(2);
17 // discrete distribution object
18 trng::discrete_dist dist(p.begin(), p.end());
19 // random number generator
20 trng::lcg64 r;
21 // draw some random numbers
22 std::vector<int> count(p.size(), 0);
23 const int samples=10000;
24 for (int i=0; i<samples; ++i) {
25 int x=dist(r); // draw a random number
26 ++count[x]; // count
27 }
28 // print results
29 std::cout << "value\t\tprobability\tcount\t\tempirical probability\n"
30 << "=====\t\t===========\t=====\t\t=====================\n";
31 for (std::vector<int>::size_type i=0; i<count.size(); ++i) {
32 std::cout << std::setprecision(3)
33 << i << "\t\t "
34 << dist.pdf(i) << "\t\t "
35 << count[i] << "\t\t "
36 << static_cast<double>(count[i])/samples << ’\n ’;
37 }
38 return EXIT_SUCCESS;
39 }

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const fast_discrete_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, fast_discrete_dist &);

}

75

4 TRNG classes

4.3 Function template generate_canonical

In this section we describe a function template introduced by [5]. Each function instantiated
from the template generate_canonical maps the result of a single invocation of a supplied
uniform random number generator to one member of the set L (described below) such that, if
the values produced by the generator are uniformly distributed, the results of the instantiation
are distributed as uniformly as possible according to the uniformity requirements described
below.

Let L consist of all values t of type result_type such that:

• If result_type is a floating-point type, result_type(0) < t < result_type(1).
• If result_type is a signed or unsigned integral type, numeric_limits<result_type>::min() ≤

t ≤ numeric_limits<result_type>::max().

Obtaining a value in L can be a useful step in the process of transforming a value generated by
a uniform random number generator into a value that can be delivered by a random number
distribution. The function template

template<class result_type, class UniformRandomNumberGenerator>
result_type generate_canonical(UniformRandomNumberGenerator & g);

returns a value from L by exactly one invocation of g, see [5] for details.

76

5 Installation

To make the installation procedure portable and comfortable, TRNG utilizes the GNU build
system. For a proper installation you will need

• GNU autotools (autoconf, automake, libtool) and
• a recent C++ compiler, that has a good template support and knows long long as a

build-in data type (e. g. the GNU C++ compiler version 3.0 or newer).

TRNG comes with numerous sample programs, that illustrate the usage of the TRNG library.
Some of these sample programs will use external libraries, namely:

• Boost C++ libraries, [4]
• An implementation of the Message Passing Interface (MPI) standard, various open source

implementations can be found at [42, 39].

If you want to compile all sample programs, you will have to install these libraries as well. But
TRNG does not depend on the libraries listed above by itself.

After the tar-ball had been extracted, you have to call the configure script. This script tries
to find your C++ compiler and generates a set of Makefiles. On most Unix-like boxes, just
calling

bauke@hal:~/trng-4.4$./configure

will work fine. The configure script can be controlled by various options and shell variables.
If no options are provided to configure TRNG will be installed in the /usr/local hierarchy.
Call

bauke@hal:~/trng-4.4$./configure --help

to get an overview about all options. Here a complex example: to compile TRNG with the
Intel C++ compiler icpc and to install the library and the header files in /opt/trng call

bauke@hal:~/trng-4.4$ CXX=icpc ./configure --prefix=/opt/trng

After TRNG had been configured, the library will be compiled and installed by the make tool.

bauke@hal:~/trng-4.4$ make
bauke@hal:~/trng-4.4$ make install

The TRNG library can be uninstalled by calling make with the uninstall target.

bauke@hal:~/trng-4.4$ make uninstall

Depending on your system further steps might be necessary to make the TRNG shared library
known to the dynamic linker. On a Linux system the system administrator has to call ldconfig
or you might set the LD_LIBRARY_PATH environment variable, see also the ld.so man page for
further information.

In the source directory examples you will find some example programs. These sources can
be compiled by

77

5 Installation

bauke@hal:~/trng-4.4/examples$ make examples

78

6 Examples

6.1 Hello world!

In listing 6.1 we present the simplest nontrivial C++ program that produces pseudo-random
numbers by TRNG. Whenever one generates random numbers with TRNG at least two header
files have to be included, one for a random number engine and one for a distribution function,
see lines 4 and 5 in listing 6.1. In lines 9 and 11 respectively a random number engine and a
random number distribution are declared. The parameters of a random number distribution
object have to be specified by its declaration. In our example random numbers with a normal
distribution with mean 6 and standard deviation of 2 are generated. Distribution parameters
can be changed at run-time, if necessary. In the loop in lines 13 and 14 the random number
engine object R and the random number distribution object normal are used to generate 1000
random numbers.

The program hello_world.cc has to be linked to the TRNG library. Using the GNU C++
compiler we transform the sources by

bauke@hal:~$ g++ -o hello_world hello_world.cc -ltrng4

into an executable.
In a second example we want to calculate an approximate value for π by a parallel Monte

Carlo calculation. The general idea of this calculation is to choose random points in a square
with edge length R. Some of these points fall into a sector of a circle in the square, see Figure 6.1.
The value of π can be approximated by considering the fraction of points that fall into the

Listing 6.1: A simple TRNG sample program hello_world.cc that generates 1000 random variables
with normal distribution.

1 #include <cstdlib>
2 #include <iostream>
3 // include TRNG header f i l e s
4 #include <trng/yarn2.hpp>
5 #include <trng/normal_dist.hpp>
6
7 int main() {
8 // random number engine
9 trng::yarn2 R;

10 // normal distribution with mean 6 and standard deviation 2
11 trng::normal_dist normal(6.0, 2.0);
12 // generate 1000 normal distributed random numbers
13 for (int i=0; i<1000; ++i)
14 std::cout << normal(R) << ’\n ’;
15 return EXIT_SUCCESS;
16 }

79

6 Examples

R

R

Figure 6.1: The numerical value of π can be estimated by throwing random points into a square.

circle. From the relation

number of points in circle
number of points in square

≈ πR2/4
R2 =

π

4

we conclude
π ≈ 4

number of points in circle
number of points in square

.

In listing 6.2 we use this equation to estimate π. In the for-loop in lines 12 to 16 a random
x-coordinate and a random y-coordinate are chosen. Both coordinates are independently
uniformly distributed in [0, 1). If

√
x2 + y2 < 1, or equivalently x2 + y2 < 1, the point (x, y)

lies within the circle. The program draws a huge number of points from the square and
counts the number of points lying within the circle and at the end of the program the fraction
4 · (points in circle)/(points in square) is shown as an estimate for π.

Listing 6.2: Sequential Monte Carlo calculation of π.
1 #include <cstdlib>
2 #include <iostream>
3 #include <trng/yarn2.hpp>
4 #include <trng/uniform01_dist.hpp>
5
6 int main(int argc, char *argv[]) {
7 const long samples=1000000l; // total number of points in square
8 long in=0l; // no points in circ le
9 trng::yarn2 r; // random number engine

10 trng::uniform01_dist u; // random number distribution
11 // throw random points into square
12 for (long i=0; i<samples; ++i) {
13 double x=u(r), y=u(r); // choose random x− and y−coordinates
14 if (x*x+y*y<=1.0) // is point in circ le ?
15 ++in; // increase counter
16 }
17 std::cout << "pi = " << 4.0*in/samples << std::endl;
18 return EXIT_SUCCESS;
19 }

80

6 Examples

6.2 Hello parallel world!

TRNG is designed as a random number generator library for sequential as well as for parallel
applications. The library does not depend on any particular communication library, it may be
utilized with Message Passing Interface (MPI), OpenMP, and as well as with POSIX threads, or
any other communication library. This section gives a short tutorial on writing parallel Monte
Carlo applications with TRNG and the MPI or OpenMP. Here we cannot give an introduction
to MPI or OpenMP, readers, who are not familiar with parallel programming, may consult
[43, 2, 47] instead.

How can we parallelize the Monte Carlo calculation of π? A striking feature of the Monte
Carlo π calculation algorithm from the previous section is, that the placement of some point in
the square does not affect the placement of other points. In other words: throwing N points
into a square is an embarrassingly parallel process. Everything that matters, is the fraction
of points in the square that placed into the circle. Keeping this fact in mind the Monte Carlo
calculation of π can be parallelized via block splitting or leapfrog method.

Listing 6.3: Parallel Monte Carlo calculation of π using block splitting and MPI.
1 #include <cstdlib>
2 #include <iostream>
3 #include "mpi.h"
4 #include <trng/yarn2.hpp>
5 #include <trng/uniform01_dist.hpp>
6
7 int main(int argc, char *argv[]) {
8 const long samples=1000000l; // total number of points in square
9 trng::yarn2 r; // random number engine

10 MPI::Init(argc, argv); // i n i t i a l i s e MPI environment
11 int size=MPI::COMM_WORLD.Get_size(); // get total number of processes
12 int rank=MPI::COMM_WORLD.Get_rank(); // get rank of current process
13 long in=0l; // number of points in circ le
14 trng::uniform01_dist u; // random number distribution
15 r.jump(2*(rank*samples/size)); // jump ahead
16 // throw random points into square and distribute workload over a l l processes
17 for (long i=rank*samples/size; i<(rank+1)*samples/size; ++i) {
18 double x=u(r), y=u(r); // choose random x− and y−coordinates
19 if (x*x+y*y<=1.0) // is point in circ le ?
20 ++in; // increase counter
21 }
22 // calculate sum of a l l local variables ’ in ’ and storre result in ’ in_all ’ on process 0
23 long in_all;
24 MPI::COMM_WORLD.Reduce(&in, &in_all, 1, MPI::LONG, MPI::SUM, 0);
25 if (rank==0) // print result
26 std::cout << "pi = " << 4.0*in_all/samples << std::endl;
27 MPI::Finalize(); // quit MPI
28 return EXIT_SUCCESS;
29 }

81

6 Examples

6.2.1 Block splitting

Here we choose a parallelization strategy that is based on the block splitting technique,
introduced in section 2. A total of N points has to be selected by p processes. We number the
points from 0 to N − 1 and the processes from 0 to p− 1 respectively. The number of a process
is called its rank. To distribute the workload equally, we split the entire set of N points into p
consecutive blocks of about N/p points. To be specific, a process with rank r selects the points
with numbers

bN · r/pc to bN · (r + 1)/pc − 1 ,

where b·c denotes rounding to zero. Each point is determined by two coordinates and a process
with rank r consumes

2 (bN · (r + 1)/pc − bN · r/pc)

random numbers, which are generated by the same random number engine.
All concurrent processes generate random points by their own local copy of the same random

number engine. Of course, if all these engines start from the same initial state, they will produce
the same sequence of random numbers. For that reason each process jumps 2bN · r/pc steps
ahead, before any random numbers are consumed. This ensures that sequences of random
numbers of two different processes never overlap, and furthermore, the outcome of the
parallelized program is the same as for the sequential in the previous section, even in its
statistical errors.

Listing 6.3 presents an implementation of the parallel Monte Carlo computation of π by
MPI, while in listing 6.4 an implementation presented that is based on OpenMP. Note the
parenthesis within the argument of the jump method in lines 15 and 17 respectively. Together
with the C++ rounding rules they are the C++ equivalent to the b·c function.

There is one important conceptual difference between the MPI version and the OpenMP
implementation. While MPI is based on a distributed memory model, OpenMP can utilize
shared memory. For that reason the MPI program counts how many points lie in the circle for
each process in a process local variable in. At the end of the computation the process local
variables have to be summed up by MPI::COMM_WORLD.Reduce to the (process local) variable
in_all on the process with rank zero. In a OpenMP program this global reduction can be
avoided by using a shared memory variable. But here concurrent write accesses to in have to
be prevented by the pragma omp critical in lines 23 to 24.

6.2.2 Leapfrog

Leapfrog is a convenient approach to derive p non overlapping streams of pseudo-random
numbers from a single base stream. As defined in section 3.1 each parallel random number
engine provides a split method for leapfrog. If split(p, s) is called, the internal parameters
of the random number engine are changed in such a way, that future calls to operator() will
generate the sth sub-stream of p sub-streams. Sub-streams are numbered from 0 to p− 1.
Changing line 15 or line 17 in listing 6.3 or listing 6.4 respectively, which reads

r.jump(2*(rank*samples/size)); // jump ahead

into

r.split(size, rank); // choose sub−stream no. rank out of size streams

82

6 Examples

Listing 6.4: Parallel Monte Carlo calculation of π using block splitting and OpenMP.
1 #include <cstdlib>
2 #include <iostream>
3 #include <omp.h>
4 #include <trng/yarn2.hpp>
5 #include <trng/uniform01_dist.hpp>
6
7 int main(int argc, char *argv[]) {
8 const long samples=1000000l; // total number of points in square
9 long in=0l; // number of points in circ le

10 // distribute workload over a l l processes
11 #pragma omp parallel
12 {
13 trng::yarn2 r; // random number engine
14 int size=omp_get_num_threads(); // get total number of processes
15 int rank=omp_get_thread_num(); // get rank of current process
16 trng::uniform01_dist u; // random number distribution
17 r.jump(2*(rank*samples/size)); // jump ahead
18 long in_local=0l;
19 // throw random points into square
20 for (long i=rank*samples/size; i<(rank+1)*samples/size; ++i) {
21 double x=u(r), y=u(r); // choose random x− and y−coordinates
22 if (x*x+y*y<=1.0) // is point in circ le ?
23 ++in_local; // increase thread−local counter
24 }
25 #pragma omp critical
26 in+=in_local; // increase global counter
27 }
28 // print result
29 std::cout << "pi = " << 4.0*in/samples << std::endl;
30 return EXIT_SUCCESS;
31 }

provides different statistically independent sub-streams of pseudo-random numbers to each
process.

But note, the pseudo-random numbers of the base stream are now utilized in a completely
different fashion. The sequential program and also the two on block splitting based programs
from section 6.2.1 determine the position of a point (its x- and y-coordinate) by two consecutive
pseudo-random numbers of the base sequence. After calling split(size, rank) consecutive
calls to operator() will return pseudo-random numbers, that are no longer neighboring
numbers of the base sequence. In fact they have a distance of size with respect to the original
sequence of pseudo-random numbers. For that reason the proposed replacement of the call of
the jump method to a call to the split method will result in another value for the approximation
of π with another statistical error.

To prevent this issue, we use the fact that the leapfrog method can be applied several times
to a sequence of pseudo-random numbers by successive calls to split. Each time split is
invoked the sequence is split into further sub-sequences. In listing 6.5 and listing 6.6 it is
shown how this works. Both programs start with two random number engines of the same
kind.

trng::yarn2 rx, ry; // random number engines for x- and y-coordinates

83

6 Examples

Later all x- and y-coordinates will be determined exclusively by one of these random number
engines. But without any manipulations of the internal status via jump or split method,
both engines will return the same sequences of pseudo-random numbers. Therefore, if the
coordinates of each point are chosen by calling operator() of rx and ry once, all points will
lie on the diagonal of the square. For that reason the sequences are split by

rx.split(2, 0); // choose sub-stream no. 0 out of 2 streams
ry.split(2, 1); // choose sub-stream no. 1 out of 2 streams

into two non overlapping sequences. Now successive calls to operator() will return different
sequences of pseudo-random numbers and the points are uniformly distributed over the
square. But still each process consumes the same two sequences of random numbers. However,
this can be solved by calling the split method a second time.

rx.split(size, rank); // choose sub-stream no. rank out of size streams
ry.split(size, rank); // choose sub-stream no. rank out of size streams

Listing 6.5: Parallel Monte Carlo calculation of π using leapfrog and MPI.
1 #include <cstdlib>
2 #include <iostream>
3 #include "mpi.h"
4 #include <trng/yarn2.hpp>
5 #include <trng/uniform01_dist.hpp>
6
7 int main(int argc, char *argv[]) {
8 const long samples=1000000l; // total number of points in square
9 trng::yarn2 rx, ry; // random number engines for x− and y−coordinates

10 MPI::Init(argc, argv); // ini t ia l ize MPI environment
11 int size=MPI::COMM_WORLD.Get_size(); // get total number of processes
12 int rank=MPI::COMM_WORLD.Get_rank(); // get rank of current process
13 // spl i t PRN sequences by leapfrog method
14 rx.split(2, 0); // choose sub−stream no. 0 out of 2 streams
15 ry.split(2, 1); // choose sub−stream no. 1 out of 2 streams
16 rx.split(size, rank); // choose sub−stream no. rank out of size streams
17 ry.split(size, rank); // choose sub−stream no. rank out of size streams
18 long in=0l; // number of points in circ le
19 trng::uniform01_dist u; // random number distribution
20 // throw random points into square and distribute workload over a l l processes
21 for (long i=rank; i<samples; i+=size) {
22 double x=u(rx), y=u(ry); // choose random x− and y−coordinates
23 if (x*x+y*y<=1.0) // is point in circ le ?
24 ++in; // increase counter
25 }
26 // calculate sum of a l l local variables ’ in ’ and storre result in ’ in_all ’ on process 0
27 long in_all;
28 MPI::COMM_WORLD.Reduce(&in, &in_all, 1, MPI::LONG, MPI::SUM, 0);
29 if (rank==0) // print result
30 std::cout << "pi = " << 4.0*in_all/samples << std::endl;
31 MPI::Finalize(); // quit MPI
32 return EXIT_SUCCESS;
33 }

84

6 Examples

Listing 6.6: Parallel Monte Carlo calculation of π using leapfrog and OpenMP.
1 #include <cstdlib>
2 #include <iostream>
3 #include <omp.h>
4 #include <trng/yarn2.hpp>
5 #include <trng/uniform01_dist.hpp>
6
7 int main(int argc, char *argv[]) {
8 const long samples=1000000l; // total number of points in square
9 long in=0l; // no points in circ le

10 // distribute workload over a l l processes
11 #pragma omp parallel
12 {
13 trng::yarn2 rx, ry; // random number engines for x− and y−coordinates
14 int size=omp_get_num_threads(); // get total number of processes
15 int rank=omp_get_thread_num(); // get rank of current process
16 // spl i t PRN sequences by leapfrog method
17 rx.split(2, 0); // choose sub−stream no. 0 out of 2 streams
18 ry.split(2, 1); // choose sub−stream no. 1 out of 2 streams
19 rx.split(size, rank); // choose sub−stream no. rank out of size streams
20 ry.split(size, rank); // choose sub−stream no. rank out of size streams
21 trng::uniform01_dist u; // random number distribution
22 long in_local=0l;
23 // throw random points into square
24 for (long i=rank; i<samples; i+=size) {
25 double x=u(rx), y=u(ry); // choose random x− and y−coordinates
26 if (x*x+y*y<=1.0) // is point in circ le ?
27 ++in_local; // increase thread−local counter
28 }
29 #pragma omp critical
30 in+=in_local; // increase global counter
31 }
32 // print result
33 std::cout << "pi = " << 4.0*in/samples << std::endl;
34 return EXIT_SUCCESS;
35 }

6.2.3 Block splitting or leapfrog?

TRNG provides two powerful techniques for parallelizing streams of pseudo-random numbers,
namely block splitting and leapfrog. Which one to choose, depends highly on the structure of
your Monte Carlo algorithm and your needs.

In the simplest case, each process of a parallel Monte Carlo application with a fixed number
of processes p (that does not change at run time) has just to equipped with some source
of pseudo-random numbers and the only requirement on the p streams of pseudo-random
numbers is, that they do not overlap with any stream of pseudo-random numbers on any other
process. In this case it is sufficient to use a single random number engine of the same type for
each of the p process. Different streams are deviated by the leapfrog method and calling the
split method of a pseudo-random number engine object after these random number engines
have been initialized with the same parameters and the same seed. Of course with this simple
minded approach the outcome of a Monte Carlo application (and the actual statistical errors)
will depend on the number of processes.

85

6 Examples

On the other hand it is often desirable to design a parallel Monte Carlo algorithm in such
a way that its outcome is independent of the number of processes. That means, that the
Monte Carlo algorithm plays fair, see also section 2.3. Usually this additional constraint can be
fulfilled by a creative combination of block splitting, leapfrog method and using more than one
random number engine per processor. The previous sections gave already some elementary
examples, how this can be achieved. But in general this can be quite intricate. Therefore we
give some general guidelines.

• Identify the inherently parallel parts of the Monte Carlo algorithm. Which steps of the
Monte Carlo algorithm cannot be parallelized?
• Break the parallelizable tasks into p (p number of processes) smaller sub-parts of approx-

imately equal size.
• Is the number of pseudo-random numbers, that is consumed by a parallelizable task

(before it is divided into subparts), constant or does it change at runtime? If it is constant,
break up the sequence of a single pseudo-random number engine into sub-streams in such
a way, that it mimics the way in which the parallelizable task is split into independent
sub-problems. This can always be archived by calling the split or the jump method of a
random number engine object.
• If the number of pseudo-random numbers, that is consumed by a parallelizable task,

is not constant or cannot be determined a priori, e. g. because this number itself is a
function of the random number sequence, an upper bound for this number may be
estimated. With this number a Monte Carlo algorithm can often be parallelized as if the
number of consumed random numbers was fixed.

To make these advises somewhat more clear, we give a further example. Imagine the simulation
of a site percolation process [52] on a two-dimensional square lattice of size N = Nx × Ny. In
site percolation each site of the lattice is occupied with probability P independently of the other
sites and clusters of neighboring occupied sites are constructed afterward. Once these clusters
are known, one can answer for a particular realization of occupied sites a lot of questions, that
arise in percolation theory. Is there a spanning cluster, that connects the lower line of the grid
and its upper line? What is the size of the largest cluster? And so on. How can we parallelize
such a Monte Carlo simulation for site percolation?

The easiest way to do this, is not to parallelize at all. At least not the analysis of a single
realization of occupied sites itself. Usually one is not interested in the analysis of a single
realization of occupied sites by itself, but one wants to know statistical properties of site
percolation (or another problem) that arise after averaging over many, lets say M, realizations
of systems of the same kind. Its is quite natural to spread the workload over p processors
in such a way, that each process analyzes each pth lattice of the M lattices. If we number
the processes by its rank from 0 to p− 1 and the lattices form 0 to M− 1, each process starts
with a lattice which number equals the process’ rank. Thereafter each process can skip p− 1
lattices, because these are handled by other processes, and continue with the next lattice. Of
course each process has not only to skip the work, that is done by other process, but also
the pseudo-random numbers, that would be consumed by analyzing the skipped lattices.
Listing 6.7 gives a sketch of such a parallelized site percolation program.

Unfortunately it is not always possible to parallelize a Monte Carlo simulation in such a
coarse-grained fashion like in the last example. Sometimes (e. g. in the Swendson-Wang-cluster-
algorithm [53, 41]) the generation and the analysis of a single lattice has to be parallelized by
itself. For that reason we split the lattice into px × py sub-lattices in such a way that the number

86

6 Examples

Listing 6.7: Sketch of a coarse-grained parallel Monte Carlo simulation of site percolation via MPI.
The program creates many realizations of lattices with randomly occupied sites. Each realization is
generated by a single process.

1 #include <cstdlib>
2 #include <trng/yarn2.hpp>
3 #include <trng/uniform01_dist.hpp>
4 #include "mpi.h"
5
6 const int number_of_realizations=1000;
7 const int Nx=250, Ny=200; // grid size
8 const int number_of_PRNs_per_sweep=Nx*Ny;
9 int site[Nx][Ny]; // lat t i ce

10 const double P=0.46; // occupation probability
11
12 int main(int argc, char *argv[]) {
13 MPI::Init(argc, argv); // ini t ia l ize MPI environment
14 int size=MPI::COMM_WORLD.Get_size(); // get total number of processes
15 int rank=MPI::COMM_WORLD.Get_rank(); // get rank of current process
16 trng::yarn2 R; // random number engine
17 trng::uniform01_dist u; // random number distribution
18 // skip random numbers that are consumed by other processes
19 R.jump(rank*number_of_PRNs_per_sweep);
20 for (int i=rank; i<number_of_realizations; i+=size) {
21 // consume Nx ∗ Ny pseudo−random numbers
22 for (int x=0; x<Nx; ++x)
23 for (int y=0; y<Ny; ++y)
24 if (u(R)<P)
25 site[x][y]=1; // site is occupied
26 else
27 site[x][y]=0; // site is not occupied
28 // skip random numbers that are consumed by other processes
29 R.jump((size-1)*number_of_PRNs_per_sweep);
30 // analyze la t t i ce
31 // . . . source omitted
32 }
33 MPI::Finalize(); // quit MPI
34 return EXIT_SUCCESS;
35 }

of parallel processes p equals px × py and px ≈ py. Each process is responsible for one of the
sub-lattices and uses the same random number engine. This generic parallelization paradigm
is also known as domain decomposition.

To make the site percolation lattice generation independent of the number processes and thus
independent of the details of the lattice partition, some numbers within the stream of pseudo-
random numbers of the random number engine have to be skipped by the jump method. If we
determine the state (occupied or not occupied) of the sites in a row-major fashion, the jump
method has to be called, whenever a process has filled a row of its sub-lattice. Of course each
process has to skip a certain amount of pseudo-random numbers at the start of the simulation,
too.

Listing 6.8 shows the outline of a fine-grained parallel Monte Carlo simulation of site percola-
tion via MPI, where each single lattice generation is done in parallel via domain decomposition.
This program shows two noteworthy implementation details. First the program uses a runtime
generated Cartesian communicator rather than the standard communicator MPI::COMM_WOLD

87

6 Examples

Listing 6.8: Sketch of a fine-grained parallel Monte Carlo simulation of site percolation via MPI. The
program creates many realizations of lattices with randomly occupied sites. Each realization is generated
by all processes together, workload is distributed by domain decomposition.

1 #include <cstdlib>
2 #include <new>
3 #include <trng/yarn2.hpp>
4 #include <trng/uniform01_dist.hpp>
5 #include "mpi.h"
6
7 const int number_of_realizations=1000;
8 const int Nx=250, Ny=200; // grid size
9 const double P=0.46; // occupation probability

10
11 int main(int argc, char *argv[]) {
12 MPI::Init(argc, argv); // ini t ia l ize MPI environment
13 int size=MPI::COMM_WORLD.Get_size(); // get total number of processes
14 // create a two−dimensional Cartesian communicator
15 int dims[2] = {0, 0}; // number of processes in each domension
16 int coords[2]; // coordinates of current process within the grid
17 bool periods[2] = { false, false }; // no periodic boundary conditions
18 // calculate a balanced grid partitioning such that size = dims[0]∗dims[1]
19 MPI::Compute_dims(MPI::COMM_WORLD.Get_size(), 2, dims);
20 MPI::Cartcomm Comm=MPI::COMM_WORLD.Create_cart(2, dims, periods, true);
21 int rank=Comm.Get_rank(); // get rank of current process
22 Comm.Get_coords(rank, 2, coords); // get coordinates of current process
23 // determine section of current process
24 int x0=coords[0]*Nx/dims[0], x1=(coords[0]+1)*Nx/dims[0], Nxl=x1-x0,
25 y0=coords[1]*Ny/dims[1], y1=(coords[1]+1)*Ny/dims[1], Nyl=y1-y0;
26 int *site=new int[Nxl*Nyl]; // allocate memory to storre a sublattice
27 trng::yarn2 R; // random number engine
28 trng::uniform01_dist u; // random number distribution
29 // skip random numbers that are consumed by other processes
30 R.jump(Nx*y0+x0);
31 for (int i=0; i<number_of_realizations; ++i) {
32 // consume Nxl ∗ Nyl pseudo−random numbers
33 int *s=site;
34 for (int y=y0; y<y1; ++y) {
35 for (int x=x0; x<x1; ++x) {
36 if (u(R)<P)
37 *s=1; // site is occupied
38 else
39 *s=0; // site is not occupied
40 ++s;
41 }
42 // skip random numbers that are consumed by other processes
43 R.jump(Nx-Nxl);
44 }
45 // skip random numbers that are consumed by other processes
46 R.jump(Nx*(Ny-Nyl));
47 // analyze la t t i ce
48 // . . . source omitted
49 }
50 MPI::Finalize(); // quit MPI
51 return EXIT_SUCCESS;
52 }

88

6 Examples

as seen in the MPI examples so far. Such a communicator reflects the special topology of the
domain decomposition and eases its implementation significantly. The number of sub-lattices
in each dimension, px and py respectively, is determined by MPI::Compute_dims, see [43, 2]
for details. Its result (returned in the field dims) determines the topology of the Cartesian
communicator Comm. Another nice feature of the example code in listing 6.8 is, that it does not
assume, that the number of sites in any dimension is a multiple of the number of sub-lattices
in this dimension. So the sizes of the sub-lattices can vary slightly from process to process.
The precise range of coordinates, that each process is responsible for, is calculated in lines 24
and 25.

Skipping numbers in a pseudo-random number sequence via jump is not for free. Of course
it is so smart, that it can jump ahead without actually generating the numbers that have to
be skipped. But the complexity of jump grows logarithmically in its argument. If the domain
decomposition is coarse-grained enough, the overhead introduced by skipping numbers via
jump can be neglected. But if the number of processes, that generate a site percolation lattice,
becomes larger and larger, at a certain point this overhead can no longer be ignored and
starts do limited the speedup, that is achievable by parallelization. Finding the right level of
granularity is a general problem in parallel computing. On one hand one wants to use a large
number of processes to attain a large speedup, on the other hand, the relative portion of the
inherent sequential part of a program and the overhead introduced by the parallelization grow
with the number of processes as well. This fact is also known as Amdahl’s law.

6.3 Using TRNG with STL and Boost

Whenever large scale Monte Carlo applications are written, they will not base on TRNG solely,
but also on other libraries, e. g. the C++ Standard Template Library (STL) or Boost [4]. In this
section we show, how to use TRNG in combination with the STL, especially its containers and
algorithms and the bind facility of Boost1. We assume you are familiar with the concepts of the
C++ STL, otherwise we suggest to read [40].

Imagine a C++ array or an STL container like a vector or a list of integers that has to be
populated by random numbers with a given distribution. This can be achieved by a simple
loop.

trng::yarn2 R; // random number engine
trng::uniform_int_dist U(0, 100); // random number distribution
std::vector<long> v(10); // vector of long with 10 elements
for (std::vector<long>::iterator i(v.begin()), end(v.end()); i!=end; ++i)

*i=U(R); // generate a random number form distribution U by engine R

This loop looks innocent, but it is not. Its error-prone and it its not obvious what is actually
effected by the loop. The loop is error-prone because the programmer has to take care that the
type of the iterator i fits to the container. Things become much more handy, if STL algorithms
like std::generate are used.

The template function std::generate takes an iterator range and a function object that takes
no arguments as its arguments. The prototype of this function reads

namespace std {

1The bind facility of Boost will be part of future versions of the STL.

89

6 Examples

template <class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last, Generator gen);

}

and it assigns the result of invoking gen to each element in the range [first, last). Random
number distributions as introduced in section 3.2 do not meet the requirements of std::
generate, because their overloaded call operator requires at least one argument, namely a
random number engine, see Table 3.2. For that reason we need a function adapter, that makes
random number distributions compatible with std::generate. The following template class
binder_cl is such a function adapter.

template<typename PRN_dist_t, typename PRN_engine_t>
class binder_cl {
PRN_dist_t &dist;
PRN_engine_t &engine;

public:
binder_cl(PRN_dist_t &dist, PRN_engine_t &engine) : dist(dist), engine(engine) {
}
typename PRN_dist_t::result_type operator()() {
return dist(engine);

}
};

It holds a reference to a random number engine and a reference to a random number distribu-
tion respectively as private data members. Its call operator calls the call operator of the random
number distribution with the random number engine as its argument. With this template class
an STL container v can be filled by

trng::yarn2 R; // random number engine
trng::uniform_int_dist U(0, 100); // random number distribution
std::vector<long> v(10); // vector of long with 10 elements
std::generate(v.begin(), v.end(), binder_cl<trng::uniform_int_dist, trng::yarn2>(U, R));

The statement

binder_cl<trng::uniform_int_dist, trng::yarn2>(U, R)

creates a temporary anonymous object of the class binder_cl<trng::uniform_int_
dist, trng::yarn2>, which is a instantiation of the template class binder_cl. Up to now
we have not gained very much. Now we can replace an explicit loop by a template function
std::generate, but the syntax is clumsy and as error-prone as the explicit loop, because the
types, that specify the template class binder_cl have to be given explicitly. This is a common
obstacle of generic programming in C++ but this can be avoided by a further helper function
make_binder.

template<typename PRN_dist_t, typename PRN_engine_t>
inline
binder_cl<PRN_dist_t, PRN_engine_t> make_binder(PRN_dist_t &dist, PRN_engine_t &engine) {
return binder_cl<PRN_dist_t, PRN_engine_t>(dist, engine);

}

With this little helper function the line

std::generate(v.begin(), v.end(), binder_cl<trng::uniform_int_dist, trng::yarn2>(U, R));

90

6 Examples

can be simplified to

std::generate(v.begin(), v.end(), make_binder(U, R));

Adapting function objects to functions and algorithms is a common task in generic pro-
gramming. The C++ STL is equipped with some adapter functions like std::bind1st or
std::bind2nd, but they are of limited use and from time to time further adapter functions
have to be created, as shown in the preceding paragraphs. The bind facility of the Boost library
generalizes the STL function adapters and we do not have to write our own function adapters.
Here we can give only a glimpse of the bind facility, everyone how wants to explore the full
capabilities of boost::bind should read the Boost documentation.

The boost equivalent to

std::generate(v.begin(), v.end(), make_binder(U, R));

reads

std::generate(v.begin(), v.end(), boost::bind(U, boost::ref(R)));

In this example the function boost::bind returns a temporary function object whose call
operator requires no arguments. The function boost::ref assures that the temporary function
object holds a reference to the random number engine R, otherwise it would contain a copy of
R. Omitting boost::ref may have unexpected side effects, e. g. the loop

for (int i(0); i<10; ++i)
std::generate(v.begin(), v.end(), boost::bind(U, R));

would fill the vector v ten times with random numbers, each time with the same set of random
numbers. Because boost::bind generates at each call to std::generate a copy of the random
number engine R and this copy determines the random values in v, but not the random number
engine R itself. As a consequence of this copy process std::generate generates random
numbers by a random number engine, that starts with the same internal state in each cycle of
the loop.

Listing 6.9 demonstrates all the techniques for binding function arguments that have been
discussed in this section. Additionally it shows that TRNG random number engine meet the
requirements of the STL function std::random_shuffle directly, no function adaption via
boost:bind is needed.

Listing 6.9: This demo program demonstrates the interplay of TRNG, the C++ STL and the bind facility
of Boost.

1 #include <cstdlib>
2 #include <iostream>
3 #include <vector>
4 #include <algorithm>
5 #include <trng/config.hpp>
6 #include <trng/yarn2.hpp>
7 #include <trng/uniform_int_dist.hpp>
8 #if defined HAVE_BOOST
9 #include <boost/bind.hpp>

10 #else
11
12 // helper class
13 template<typename PRN_dist_t, typename PRN_engine_t>
14 class binder_cl {

91

6 Examples

15 PRN_dist_t &dist;
16 PRN_engine_t &engine;
17 public:
18 binder_cl(PRN_dist_t &dist, PRN_engine_t &engine) : dist(dist), engine(engine) {
19 }
20 typename PRN_dist_t::result_type operator()() {
21 return dist(engine);
22 }
23 };
24
25 // convenience function
26 template<typename PRN_dist_t, typename PRN_engine_t>
27 inline
28 binder_cl<PRN_dist_t, PRN_engine_t> make_binder(PRN_dist_t &dist, PRN_engine_t &engine) {
29 return binder_cl<PRN_dist_t, PRN_engine_t>(dist, engine);
30 }
31
32 #endif
33
34
35 // print an iterator range to stdout
36 template<typename iter>
37 void print_range(iter i1, iter i2) {
38 while (i1!=i2) std::cout << (*(i1++)) << ’\t ’;
39 std::cout << "\n\n";
40 }
41
42 int main() {
43 trng::yarn2 R;
44 trng::uniform_int_dist U(0, 100);
45 std::vector<long> v(10);
46
47 std::cout << "random number generation by cal l operator\n";
48 for (std::vector<long>::size_type i=0; i<v.size(); ++i)
49 v[i]=U(R);
50 print_range(v.begin(), v.end());
51 std::vector<long> w(12);
52 #if defined HAVE_BOOST
53 std::cout << "random number generation by std : : generate\n";
54 std::generate(w.begin(), w.end(), boost::bind(U, boost::ref(R)));
55 print_range(w.begin(), w.end());
56 std::cout << "random number generation by std : : generate\n";
57 std::generate(w.begin(), w.end(), boost::bind(U, boost::ref(R)));
58 print_range(w.begin(), w.end());
59 #else
60 std::cout << "random number generation by std : : generate\n";
61 std::generate(w.begin(), w.end(), make_binder(U, R));
62 print_range(w.begin(), w.end());
63 std::cout << "random number generation by std : : generate\n";
64 std::generate(w.begin(), w.end(), make_binder(U, R));
65 print_range(w.begin(), w.end());
66 #endif
67 std::cout << "same sequence as above , but in a random shuffled order\n";
68 std::random_shuffle(w.begin(), w.end(), R);
69 print_range(w.begin(), w.end());
70 return EXIT_SUCCESS;
71 }

92

7 Implementation details and efficiency

Random number engines trng::mrgn, trng::mrgns, trng::yarnn, and trng::yarnns utilize
LFSR sequences

ri = a1 · ri−1 + a2 · ri−2 + . . . + an · ri−n mod m (7.1)

over a prime field Fm. The modulus m may be any prime. But LFSR sequences over F2
have found much more proliferation in the random number generation business than LFSR
sequences over other prime fields. LFSR sequences over general prime fields have been
proposed in the literature [15, 22, 19] as PRNGs. But so far, they found less attention by
practitioners because it is not straight forward to implement LFSR sequences over Fm efficiently,
if m is a large prime, especially if m of the order of the largest in a single computer word
representable integer. For that reason, we present some implementation techniques.

We assume that all integer arithmetic is done in w-bit registers and m < 2w−1. Under this
condition addition of modulo m can be done without overflow problems. But multiplying
two (w− 1)-bit integers modulo m is not straightforward because the intermediate product
has 2(w − 1) significant bits and cannot be stored in a w-bit register. For the special case
ak <

√
m Schrage [50] showed how to calculate ak · ri−k mod m without overflow. Based

on this technique a portable implementation of LFSR sequences with coefficients ak <
√

m
is presented in [23]. For parallel PRNGs this methods do not apply because the leapfrog
method may yield coefficients that violate this condition. Knuth [19, section 3.2.1.1] proposed
a generalization of Schrage’s method for arbitrary positive factors less than m, but this method
requires up to twelve multiplications and divisions and is therefore not very efficient.

The only way to implement (2.6) without additional measures to circumvent overflow
problems is to restrict m to m < 2w/2. On machines with 32-bit registers, 16 random bits per
number is not enough for some applications. Fortunately today’s C compiler provide fast
64-bit-arithmetic even on 32-CPUs and genuine 64-CPUs become more and more common.
This allows us to increase m to 32.

7.1 Efficient modular reduction

Since the modulo operation in (2.6) is usually slower than other integer operations like addition,
multiplication, Boolean operations or shifting, it has a significant impact on the total perfor-
mance of PRNGs based on LFSR sequences. If the modulus is a Mersenne Prime m = 2e − 1,
however, the modulo operation can be done using only a few additions, Boolean operations
and shift operations [44].

A summand s = ak · ri−k in (2.6) will never exceed (m− 1)2 = (2e− 2)2 and for each positive
integer s ∈ [0, (2e − 1)2] there is a unique decomposition of s into

s = r · 2e + q with 0 ≤ q < 2e . (7.2)

93

7 Implementation details and efficiency

From this decomposition we conclude

s− r · 2e = q
s− r(2e − 1) = q + r

s mod (2e − 1) = q + r mod (2e − 1)

and r and q are bounded form above by

q < 2e and r ≤ b(2e − 2)2/2ec < 2e − 2

respectively, and therefore
q + r < 2e + 2e − 2 = 2m .

So if m = 2e − 1 and s ≤ (m− 1)2, x = s mod m can be calculated solely by shift operations,
Boolean operations and addition, viz

x = (s mod 2e) + bs/2ec . (7.3)

If (7.3) yields a value x ≥ m we simply subtract m.
From a computational point of view Mersenne Prime moduli are optimal and we propose to

choose the modulus m = 231 − 1. This is the largest positive integer that can be represented
by a signed 32-bit integer variable, and it is also a Mersenne Prime. On the other hand our
theoretical considerations favor Sophie-Germain Prime moduli, for which (7.3) does not apply
directly. But one can generalize (7.3) to moduli 2e− k [33]. Again we start from a decomposition
of s into

s = r · 2e + q with 0 ≤ q < 2e , (7.4)

and conclude

s− r · 2e = q
s− r(2e − k) = q + kr

s mod (2e − k) = q + kr mod (2e − k) .

The sum s′ = q + kr exceeds the modulus at most by a factor k + 1, because by applying

q < 2e and r ≤ b(2e − k− 1)2/2ec < 2e − k− 1

we get the bound
q + kr < 2e + k(2e − k− 1) = (k + 1)m .

In addition by the decomposition of s′ = q + kr

s′ = r′ · 2e + q′ with 0 ≤ q′ < 2e ,

it follows
s mod (2e − k) = s′ mod (2e − k) = q′ + kr′ mod (2e − k) ,

and this time the bounds

q′ < 2e and r′ ≤ b(k + 1)(2e − k)/2ec < k + 1

94

7 Implementation details and efficiency

and
q′ + kr′ < 2e + k(k + 1) = m + k(k + 2) .

hold. Therefore if m = 2e − k, s ≤ (m− k)2 and k(k + 2) ≤ m, x = s mod m can be calculated
solely by shift operations, Boolean operations and addition, viz

s′ = (s mod 2e) + kbs/2ec
x = (s′ mod 2e) + kbs′/2ec .

(7.5)

If (7.5) yields a value x ≥ m, a single subtraction of m will complete the modular reduction. To
carry out (7.5) twice as many operations as for (7.3) are needed. But (7.5) applies for all moduli
m = 2e − k with k(k + 2) ≤ m.

7.2 Fast delinearization

YARN generators hide linear structures of LFSR sequences qi by raising a generating element
g to the power gqi mod m. This can be done efficiently by binary exponentiation, which takes
O (log m) steps. But considering LFSR sequences with only a few feedback taps (n ≤ 6) and
m ≈ 231 even fast exponentiation is significantly more expensive than a single iteration of (2.6).
Therefore we propose to implement exponentiation by table look up. If m is a 2e′-bit number
we apply the decomposition

qi = qi,1 · 2e′ + qi,2 with

qi,1 = bqi/2e′c , qi,0 = qi mod 2e′
(7.6)

and use the identity

ri = gqi mod m = (g2e′
)qi,1 · gqi,0 mod m (7.7)

to calculate gqi mod m by two table look-ups and one multiplication modulo m. If m < 231 the
tables for (g2e′)qi,1 mod m and gqi,0 mod m have 216 and 215 entries respectively and fit easily
into the cache of modern CPUs.

7.3 Performance

By TRNG we provide an optimized PRNG library. The implementation uses 64-bit-arithmetic,
fast modular reduction (7.3) and (7.5) and exponentiation by table look-up (7.7) to implement
PRNGs based on LFSR sequences over prime fields, with Mersenne or Sophie-Germain Prime
modulus. PRNGs of TRNG are able to compete with other sequential PRNGs in terms of speed
and statistical properties but do support block splitting and leapfrog, too. Table 7.1 shows
some benchmark results. For this benchmark 226 PRNs were generated and the execution
time was measured to compute how many PRNs each PRNG is able to generate per second.
Apparently the performance of the PRNGs of TRNG compete quite well with popular PRNGs
like the Mersenne Twister (boost::mt19937 and mt19937) , lagged Fibonacci generators (LFSR
sequences over F2) or RANLUX that can be found in the Boost library [4].

95

7 Implementation details and efficiency

Table 7.1: Performance of various random number engines from TRNG and Boost. Test program
was compiled and executed on a Intel XEON 2.33 GHz in 64-bit mode using an Intel C++ compiler
version 10.0 and the option -O3.

generator PRNs per second

TRNG
trng::lcg64 291 · 106

trng::lcg64_shift 253 · 106

trng::mrg2 127 · 106

trng::mrg3 86 · 106

trng::mrg3s 72 · 106

trng::mrg4 74 · 106

trng::mrg5 81 · 106

trng::mrg5s 61 · 106

trng::yarn2 65 · 106

trng::yarn3 57 · 106

trng::yarn3s 45 · 106

trng::yarn4 53 · 106

trng::yarn5 62 · 106

trng::yarn5s 40 · 106

trng::lagfib2xor_19937_ull 264 · 106

trng::lagfib4xor_19937_ull 257 · 106

trng::lagfib2plus_19937_ull 254 · 106

trng::lagfib4plus_19937_ull 264 · 106

Boost
boost::minstd_rand 73 · 106

boost::ecuyer1988 55 · 106

boost::kreutzer1986 105 · 106

boost::hellekalek1995 5 · 106

boost::mt11213b 151 · 106

boost::mt19937 139 · 106

boost::lagged_fibonacci607 260 · 106

boost::lagged_fibonacci1279 204 · 106

boost::lagged_fibonacci2281 202 · 106

boost::lagged_fibonacci3217 308 · 106

boost::lagged_fibonacci4423 114 · 106

boost::lagged_fibonacci9689 113 · 106

boost::lagged_fibonacci19937 114 · 106

boost::lagged_fibonacci23209 116 · 106

boost::lagged_fibonacci44497 111 · 106

96

8 Quality

Sequences of PRNs are sequences of deterministic numbers, that try to mimic true random
numbers, and one may wonder, how close sequences produced by TRNG can come to se-
quences of real random numbers? This question can be answered (at least partly) by statistical
tests. One can apply a battery of tests on a generator, and the more tests a generator can pass,
the better its quality. One distinguishes empirical and theoretical test procedures.

Empirical tests take a finite sequence of PRNs and compute certain statistics, e. g. chi-square
or Kolmogorov-Smirnov statistics, to judge the generator as “random” or not. The test statistic
is a random variate with a probability distribution, that can be calculated under the assumption
that the test statistic is a function of true random numbers. This probability distribution is
used to judge a finite sequence of PRNs as possibly random or non-random. For example in an
actual test we may find a value of the test statistic that is so large (or small) that such a value or
a larger (or smaller) value can be found by chance for true random numbers with a probability
of 5 % only. In this case we assume the PRNG has failed the test and its sequence of PRNs
behaves non-random. But note, we may be wrong, there is a 5 % probability that we have just
seen normal statistical deviations. Therefore a statistical test should be applied several times.
If the PRNG fails more often than it can be explained by normal statistical deviations, it has a
serious flaw and should be rejected as non-random.

While empirical tests focus only on the statistical properties of a finite stream of PRNs and
ignore all the details of the underlying PRNG algorithm, theoretical tests analyze the PRNG
algorithm itself by number-theoretic methods and establish a priori characteristics of the PRN
sequence. These a priori characteristics may be used to choose good parameter sets for a certain
class of PRNGs, e. g. the coefficients of the LFSR sequences in the random number engines
trng::mrgn and trng::yarnn (see section 4.1) have been found by an extensive computer
search [23] and give good results in the spectral test [19], the most important theoretical test
for this class of generators.

On one hand the more kinds of statistical test procedures a PRNG masters, the more we will
trust its statistical properties. On the other hand statistical test can never prove that an finite
sequence of numbers is “random” or not. Knuth writes in [19]:

“In practice, we apply about half a dozen different kinds of statistical tests on a
sequence, and if is passes them satisfactorily we consider it to be random—it is
then presumed innocent until proven guilty.”

All PRNGs of TRNG and sub-streams of them have been subject to different statistical tests.
In respect of these tests the generator you find in TRNG are comparable to other well-known
high quality generators like the mersenne twister generator [34]. The tables 8.1 to 8.14 present
results of various statistical tests of streams of pseudo-random numbers, that are generated
by PRNGs of TRNG with default parameters and no leapfrog splitting. Each test was applied
eight times and the tables 8.1 to 8.14 show how often each test has been failed. Note, at a
confidence level of 0.1 or 0.9 even a perfect random number generator will “fail” these tests
on average in one of ten cases. All statistical tests are implemented by the Random Number

97

8 Quality

Generator Test Suite (RNGTS) [48]1. A detailed descriptions of the statistical tests can be found
on the RNGTS web site or in [19].

Table 8.1: Test results for random number engine trng::lcg64.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 4 of 8 failed 2 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 5 of 8 failed 3 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Random-Walk Test 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 3 of 8 failed 3 of 8 failed 3 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed

1We had to apply some minor modifications to RNGTS in order to adapt this test suite to TRNG.

98

8 Quality

Table 8.2: Test results for random number engine trng::mrg2.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 3 of 8 failed 3 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
n-Block-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 1 of 8 failed 3 of 8 failed 3 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 4 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 2 of 8 failed 4 of 8 failed 3 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed

Table 8.3: Test results for random number engine trng::mrg3.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 1 of 8 failed 5 of 8 failed 3 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 3 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Squeeze-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 3 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed

99

8 Quality

Table 8.4: Test results for random number engine trng::mrg3s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 1 of 8 failed 3 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 2 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Poker-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Squeeze-Test 1 of 8 failed 1 of 8 failed 3 of 8 failed 3 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 2 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed

Table 8.5: Test results for random number engine trng::mrg4.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 1 of 8 failed 4 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 0 of 8 failed
Permutation-Test 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 1 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 1 of 8 failed 1 of 8 failed 3 of 8 failed 3 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 3 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Birthday-Spacing-Test 3 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 3 of 8 failed 1 of 8 failed 1 of 8 failed

100

8 Quality

Table 8.6: Test results for random number engine trng::mrg5.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 2 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Poker-Test 1 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 2 of 8 failed 2 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed

Table 8.7: Test results for random number engine trng::mrg5s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 2 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Gap-Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
n-Block-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
Permutation-Test 0 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 4 of 8 failed 4 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Craps-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed

101

8 Quality

Table 8.8: Test results for random number engine trng::yarn2.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Gap-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 2 of 8 failed 2 of 8 failed 1 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed

Table 8.9: Test results for random number engine trng::yarn3.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 3 of 8 failed 2 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 3 of 8 failed 2 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 2 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed

102

8 Quality

Table 8.10: Test results for random number engine trng::yarn3s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 4 of 8 failed 1 of 8 failed 0 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 1 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Poker-Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 5 of 8 failed 3 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 2 of 8 failed 4 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed

Table 8.11: Test results for random number engine trng::yarn4.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 1 of 8 failed
Maximum-of-t Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Squeeze-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed

103

8 Quality

Table 8.12: Test results for random number engine trng::yarn5.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
n-Block-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 3 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed

Table 8.13: Test results for random number engine trng::yarn5s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 2 of 8 failed
n-Block-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Serial correlation Test 1 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Squeeze-Test 1 of 8 failed 1 of 8 failed 4 of 8 failed 2 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed

104

8 Quality

Table 8.14: Test results for random number engine boost::mt19937 (Mersenne Twister generator).

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 2 of 8 failed 3 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 1 of 8 failed 2 of 8 failed 2 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 4 of 8 failed 5 of 8 failed 4 of 8 failed 3 of 8 failed
Squeeze-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Birthday-Spacing-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Minimum-Distance Test 0 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed

105

9 Frequently asked questions

What license or licenses are you using for TRNG? TRNG is free software; you can redis-
tribute it and/or modify it under the terms of the GNU General Public License in
version 2 as published by the Free Software Foundation.

Why is the library called TRNG? Who is Tina? Tina is the name of a Linux cluster at the Insti-
tute of Theoretical Physics at the University Magdeburg in Germany. TRNG was written
to carry out Monte Carlo simulations on this parallel computer. The name Tina is a self
referring acronym for “Tina is no acronym”. The abbreviation TRNG stands for “Tina’s
Random Number Generator Library”. But sometimes it is used in the literature for “true
random number generator” as well, which is a technical device, that generates random
numbers by a physical process (e. g. radioactive decay or noise in a electric circuit).

I am confused, there are so many different PRNGs in TRNG. Which one is the best? There
is nothing like the best PRNG. If a generator behaves as a good source of randomness
or not can depend on your Monte Carlo application, and there are trade-offs between
speed and quality. In general, it is a good idea to test if the outcome of a Monte Carlo
simulation is independent of the underlying PRNG. Therefore TRNG offers so many of
them.

But generally speaking, YARN generators are a good choice (see section). If the PRNG
is the bottleneck of your Monte Carlo simulation you might try the linear congruential
generator (see section 4.1.1) or in the case of a sequential simulation a lagged Fibonacci
generator with four feedback taps (see section 4.1.4).

Why is TRNG written in C++? C++ provides a lot of advanced features as inline functions
and static polymorphism via templates. These language features give us the power
to implement a fast, portable and easy to use library of PRNGs. Other languages (as
FORTRAN or C) do no offer these (or comparable) features, are significantly slower (as
Java or scripting languages), or are supported by fewer platforms (as C#).

How can I use TRNG in my FORTRAN programs? Unfortunately this is not possible. TRNG
makes heavy use of special C++ language features as classes, inline functions, and tem-
plates. All theses concepts have no counterpart in the FORTRAN programming language.
Large parts of TRNG even do not reside in the library that you link with -ltrng4 to
your object code. Template functions and inline functions are defined exclusively in the
header files.

How can I use TRNG in my C programs? Unfortunately this is not possible. Here the same
statements apply as for the last question. However, it is much more easy to port a
C program to C++ than porting a FORTRAN program to C++. Just comply with the
following recipe.

• Rename header files foo.h of the C standard library into cfoo but let other header
files untouched, i. e., change

106

9 Frequently asked questions

#include <stdio.h>
#include <math.h>
#include <unistd.h>

into

#include <cstdio>
#include <cmath>
#include <unistd.h>

Note, unistd.h is not part of the C standard library.
• Insert the line

using namespace std;

after the include directives of each source file.
• Do not use C++ function names that are C++ keywords, i. e., class, new, public or
private.

This recipe will give you an ugly but valid C++ program, at least in the most cases. This
modified “C” program has to be compiled by a C++ compiler now, but it is ready to
benefit from the TRNG library.

Where can I give feedback, report bugs, or make a feature request. Send bugs reports and
feature requests to author of TRNG via e-mail to heiko.bauke@mpi-hd.mpg.de.

107

Bibliography

[1] Heiko Bauke and Stephan Mertens. Pseudo random coins show more heads than tails.
Journal of Statistical Physics, 114(3):1149–1169, 2004.

[2] Heiko Bauke and Stephan Mertens. Cluster Computing. Springer, 2005.

[3] Heiko Bauke and Stephan Mertens. Random numbers for large-scale distributed Monte
Carlo simulations. Physical Review E, 75(6):066701, 2007.

[4] Boost C++ libraries. http://www.boost.org.

[5] Walter E. Brown, Mark Fischler, Jim Kowalkowski, and Marc Paterno. Random Number
Generation in C++0X: A Comprehensive Proposal, version 2, 2006. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2006/n2032.pdf.

[6] Aaldert Compagner. Definitions of randomness. American Journal of Physics, 59(8):700–705,
August 1991.

[7] Aaldert Compagner. The hierarchy of correlations in random binary sequences. Journal of
Statistical Physics, 63:883–896, 1991.

[8] Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

[9] Jürgen Eichenauer-Herrmann and Holger Grothe. A remark on long-range correlations in
multiplicative congruential pseudo random number generators. Numerische Mathematik,
56(6):609–611, 1989.

[10] Alan M. Ferrenberg and D. P. Landau. Monte carlo simulations: Hidden errors from
“good” random number generators. Physical Review Letters, 69(23):3382–3384, 1992.

[11] Jay Fillmore and Morris Marx. Linear recursive sequences. SIAM Review, 10(3):342–353,
1968.

[12] George Fishman. Monte Carlo. Springer, 1996.

[13] S. W. Golomb. Shift Register Sequences. Aegan Park Press, Laguna Hills, CA, revised
edition, 1982.

[14] Peter Grassberger. On correlations in “good” random number generators. Physics Letters
A, 181(1):43–46, 1993.

[15] A. Grube. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Zeitschrift für angewandte
Mathematik und Mechanik, 53:T223–T225, 1973.

[16] Dieter Jungnickel. Finite Fields: Structure and Arithmetics. Bibliographisches Institut, 1993.

108

http://www.boost.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2032.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2032.pdf

Bibliography

[17] Scott Kirkpatrick and Erich P. Stoll. A very fast shift-register sequence random number
generator. Journal of Computational Physics, 40(2):517–526, 1981.

[18] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms.
Addison Wesley Professional, 1st edition, 1969.

[19] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms.
Addison Wesley Professional, 3rd edition, 1998.

[20] Werner Krauth. Statistical Mechanics: Algorithms and Computations. Oxford Master Series
in Statistical, Computational, and Theoretical Physics. Oxford University Press, 2006.

[21] David P. Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statistical Physics.
Cambridge University Press, 2nd edition, 2005.

[22] Pierre L’Ecuyer. Random numbers for simulation. Communications of the ACM, 33(10):85–
97, 1990.

[23] Pierre L’Ecuyer. A search for good multiple recursive random number generators. ACM
Transactions on Modeling and Computer Simulation, 3(2):87–98, 1993.

[24] Pierre L’Ecuyer. Tables of linear congruential generators of different sizes and good lattice
structure. Mathematics of Computation, 68:249–260, 1999.

[25] Pierre L’Ecuyer. Software for uniform random number generation: Distinguishing the
good and the bad. In Proceedings of the 2001 Winter Simulation Conference, pages 95–105.
IEEE, IEEE Press, 2001.

[26] Pierre L’Ecuyer. Random number generation. In James E. Gentle, Wolfgang Härdle, and
Yuichi Mori, editors, Handbook of Computational Statistics. Springer, 2004.

[27] Pierre L’Ecuyer and Peter Hellekalek. Random number generators: Selection criteria and
testing. In Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statistics,
pages 223–266. Springer, 1998.

[28] D. H. Lehmer. Mathematical methods in large-scale computing units. In Proc. 2nd Sympos.
on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949, pages 141–146. Harvard
University Press, 1951.

[29] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, 2nd edition, 1994.

[30] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2nd edition, 1997.

[31] George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National
Academy of Sciences, 61:25–28, 1968.

[32] Michael Mascagni. Parallel linear congruential generators with prime moduli. Prallel
Computing, 24(5–6):923–936, 1998.

[33] Michael Mascagni and Hongmei Chi. Parallel linear congruential generators with Sophie-
Germain moduli. Parallel Computing, 30(11):1217–1231, 2004.

109

Bibliography

[34] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30, 1998.

[35] A. De Matteis and S. Pagnutti. A class of parallel random number generators. Parallel
Computing, 13(2):193–198, 1990.

[36] A. De Matteis and S. Pagnutti. Long-range correlations in linear and non-linear random
number generators. Parallel Computing, 14(2):207–210, 1990.

[37] Don L. McLeish. Monte Carlo Simulation and Finance. John Wiley & Sons, 2005.

[38] Stephan Mertens and Heiko Bauke. Entropy of pseudo-random-number generators.
Physical Review E, 69:055702–1–055702–4, 2004.

[39] MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich.

[40] David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison-Wesley Professional, 2001.

[41] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford
University Press, 1999.

[42] Open MPI. http://www.open-mpi.org.

[43] Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers Inc, 1996.

[44] W. H. Payne, J. R. Rabung, and T. P. Bogyo. Coding the lehmer pseudo-random number
generator. Communications of the ACM, 12(2):85–86, 1969.

[45] Ora E. Percus and Malvin H. Kalos. Random number generators for MIMD parallel
processors. Journal of Parallel and Distributed Computing, 6:477–497, 1989.

[46] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes. Cambridge University Press, third edition, 2007.

[47] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2003.

[48] Random number generator test suite. http://www.comp-phys.org:16080/rngts/.

[49] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Texts in
Statistics. Springer, 2004.

[50] Linus Schrage. A more portable fortran random number generator. ACM Transactions on
Mathematical Software, 5(2):132–138, 1979.

[51] L. N. Shchur, J. R. Heringa, and H. W. J. Blöte. Simulation of a directed random-walk
model the effect of pseudo-random-number correlations. Physica A, 241(3–4):579–592,
1997.

[52] Dietrich Stauffer and Ammon Aharony. Introduction to Percolation Theory. Taylor & Francis
Ltd, 2nd edition, 1994.

110

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.open-mpi.org
http://www.comp-phys.org:16080/rngts/

Bibliography

[53] Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte
carlo simulations. Physical Review Letters, 58:86–88, 1987.

[54] Zhe-Xian Wan. Lectures on Finite Fields and Galois Rings. World Scientific, 2003.

[55] Neal Zierler. Linear recurring sequences. J. Soc. Indust. Appl. Math., 7(1):31–48, 1959.

[56] Robert M. Ziff. Four-tap shift-register-sequence random-number generators. Computers
in Physics, 12(4), 1998.

111

	Contents
	TRNG in a nutshell
	Introduction
	History

	Pseudo-random numbers for parallel Monte Carlo simulations
	Pseudo-random numbers
	General parallelization techniques for PRNGs
	Playing fair
	Linear feedback shift register sequences
	Parallelization of LFSR sequences
	Choice of modulus

	Non-linear transformations and YARN sequences

	Basic concepts
	Random number engines
	Random number distributions

	TRNG classes
	Random number engines
	Linear congruential generators
	Multiple recursive generators
	YARN generators
	Lagged Fibonacci generators

	Random number distributions
	Uniform distributions
	Exponential distribution
	Normal distribution
	Cauchy distribution
	Logistic distribution
	Lognormal distribution
	Pareto distribution
	Power-law distribution
	Tent distribution
	Weibull distribution
	Extreme value distribution
	Gamma-distribution
	chi²-distribution
	Student-t-distribution
	Snedecor-F-distribution
	Rayleigh distribution
	Bernoulli distribution
	Binomial distribution
	Geometric distribution
	Poisson distribution
	Discrete distribution

	Function template generatecanonical

	Installation
	Examples
	Hello world!
	Hello parallel world!
	Block splitting
	Leapfrog
	Block splitting or leapfrog?

	Using TRNG with STL and Boost

	Implementation details and efficiency
	Efficient modular reduction
	Fast delinearization
	Performance

	Quality
	Frequently asked questions
	Bibliography

