
Tina’s Random Number Generator Library

Version 4.22

Heiko Bauke

August 28, 2019

“The state of the art for generating uniform deviates
has advanced considerably in the last decade and
now begins to resemble a mature field.”

Press et al. [55]

Contents

1 TRNG in a nutshell 3
1.1 Introduction . 3
1.2 History . 4

2 Pseudo-random numbers for parallel Monte Carlo simulations 7
2.1 Pseudo-random numbers . 7
2.2 General parallelization techniques for PRNGs 7
2.3 Playing fair . 9
2.4 Linear recurrences . 10

2.4.1 Linear congruential generators . 10
2.4.2 Linear feedback shift register sequences 11

2.5 Non-linear transformations and YARN sequences 15

3 Basic concepts 18
3.1 Random number engines . 18
3.2 Random number distributions . 21

4 TRNG classes 24
4.1 Random number engines . 24

4.1.1 Linear congruential generators . 24
4.1.2 Multiple recursive generators . 28
4.1.3 YARN generators . 34
4.1.4 Lagged Fibonacci generators . 41
4.1.5 Mersenne twister generators . 46

4.2 Random number distributions . 47
4.2.1 Uniform distributions . 48
4.2.2 Exponential distribution . 51
4.2.3 Two-sided exponential distribution . 53
4.2.4 Normal distributions . 54
4.2.5 Truncated normal distribution . 58
4.2.6 Maxwell distribution . 59
4.2.7 Cauchy distribution . 61
4.2.8 Logistic distribution . 62
4.2.9 Lognormal distribution . 63
4.2.10 Pareto distribution . 65
4.2.11 Power-law distribution . 66
4.2.12 Tent distribution . 68
4.2.13 Weibull distribution . 69
4.2.14 Extreme value distribution . 71
4.2.15 Γ-distribution . 72

1

Contents

4.2.16 B-distribution . 74
4.2.17 χ2-distribution . 75
4.2.18 Student-t distribution . 76
4.2.19 Snedecor-F distribution . 78
4.2.20 Rayleigh distribution . 79
4.2.21 Bernoulli distribution . 80
4.2.22 Binomial distribution . 82
4.2.23 Negative binomial distribution . 84
4.2.24 Hypergeometric distribution . 85
4.2.25 Geometric distribution . 87
4.2.26 Poisson distribution . 88
4.2.27 Zero-truncated Poisson distribution . 89
4.2.28 Discrete distribution . 90

4.3 Function template generate_canonical . 93
4.4 CUDA support . 93

5 Installation 96

6 Examples 98
6.1 Hello world! . 98
6.2 Hello parallel world! . 100

6.2.1 Block splitting . 100
6.2.2 Leapfrog . 104
6.2.3 Block splitting or leapfrog? . 106

6.3 Using TRNG with STL and Boost . 110
6.4 Using TRNG with C++11 . 113

7 Implementation details and efficiency 114
7.1 Efficient modular reduction . 114
7.2 Fast delinearization . 116
7.3 Performance . 116

8 Quality 118

9 Frequently asked questions 127

License 129

Bibliography 130

Index 134

2

1 TRNG in a nutshell

1.1 Introduction

The Monte Carlo method is a widely used and commonly accepted simulation technique
in physics, operations research, artificial intelligence, and other fields, and pseudo-random
numbers (PRNs) are its key resource. All Monte Carlo simulations include some sort of
averaging of independent samples, a calculation that is embarrassingly parallel. Hence it
is no surprise that more and more large scale simulations are run on parallel systems like
networked workstations, clusters, multicore systems or high-performance graphics cards. For
each Monte Carlo simulation the quality of the PRN generator (PRNG) is a crucial factor. In
a parallel environment the quality of a PRNG is even more important than in a non-parallel
environment to some extent because feasible sample sizes are easily 10 . . . 104 times as large as
on a sequential machine. The main problem, however, is the parallelization of the PRNG itself.

Application programmers and scientists need not to grapple with all the technical details of
pseudo-random number generation if a PRNG library is used. The following requirements are
frequently demanded from a library for (parallel) pseudo-random number generation:

• The library should provide a set of different interchangeable algorithms for pseudo-
random number generation.
• For each algorithm different well tested parameter sets should be provided that guarantee

a long period and good statistical properties.
• The internal state of a PRNG can be saved for later use and restored. This makes it

possible to stop a simulation and to carry on later.
• PRNGs have to support block splitting and leapfrog, see section 2.1.
• The library should provide methods for generating random variables with various

distributions, uniform and non-uniform.
• The library should be implemented in a portable, speed-optimized fashion.

If these are also your requirements for a PRNG library, you should go with Tina’s Random
Number Generator Library.

Tina’s Random Number Generator Library (TRNG) is a state of the art C++ pseudo-random
number generator library for sequential and parallel Monte Carlo simulations. Its design
principles are based on the extensible random number generator facility that was introduced in
the C++11 standard [21, 22]. The TRNG library features an object oriented design, is easy to use
and has been speed optimized. Its implementation does not depend on any communication
library or hardware architecture. TRNG is suited for shared memory as well as for distributed
memory computers and may be used in any parallel programming environment, e. g., Message
Passing Interface Standard or OpenMP. All generators that are implemented by TRNG have
been subjected to thorough statistical tests in sequential and parallel setups, see also section 8.

This reference is organized as follows. In chapter 2 we present some basic techniques for
parallel random number generation, chapter 3 introduces the basic concepts of TRNG, whereas

3

1 TRNG in a nutshell

chapter 4 describes all classes of TRNG in detail. In chapter 5 we give installation instructions,
and chapter 6 presents some example programs that demonstrate the usage of TRNG in sequen-
tial as well as in parallel Monte Carlo applications. Chapter 7 deals with some implementation
details and performance issues. We complete the TRNG reference with the presentation of
some statistical tests of the PRNGs of TRNG in chapter 8 and answer some FAQs in chapter 9.

This manual can be read in several ways. You might read this manual chapter by chapter
from the beginning to its end. Impatient readers should read at least chapter 2 to familiarize
themselves with some basic terms that are used in this text before they jump to chapter 5 and
chapter 6. These chapters deal with the installation and give some example code. Chapters 3
and 4 are mainly for reference and the reader will come back to them again and again.

The TRNG manual is not written as an introduction to the Monte Carlo method. It is assumed
that the reader already knows the basic concepts of Monte Carlo. Novices in the Monte Carlo
business find further information in various textbooks on this topic [16, 59, 50, 29, 28, 46].

1.2 History

TRNG started in 2000 as a student research project. Its implementation as well as its technical
design has changed several times. Starting with version 4.0 we adopted the interface proposed
by [7] and finally adopted by the C++11 standard [21, 22].

Version 4.0 Initial release of TRNG that implements the interface proposed by [7].

Version 4.1 Additive and exclusive-or lagged Fibonacci generators with two and four feedback
taps have been added to the set of PRNGs. Lagged Fibonacci generators do not provide
any splitting facilities. TRNG implements the template function generate_canonical
introduced by [7].

Version 4.2 Documentation has been revised. Minor bug-fixes to lagged Fibonacci generators.

Version 4.3 Rayleigh distribution and class for correlated normal distributed random numbers
added. Changed default parameter sets for generators mrg3s, mrg5s, yarn3s, and yarn5s.
The new parameter sets perform better in the spectral test.

Version 4.4 Class for discrete distributions rewritten to allow efficient change of relative
probabilities after initialization. New random number engine lcg64_shift introduced.

Version 4.5 Minor improvements and bug fixes. Utility functions uniformcc, uniformco,
uniformoc, and uniformoo had been reimplemented as suggested by Bruce Carneal.
The new implementation of these functions is slightly faster and generates random
numbers that are distributed more evenly in the intervals [0, 1], [0, 1), (0, 1], and (0, 1)
respectively. Added support for Snedecor-F- and Student-t-distribution and the class
fast_discrete_dist for faster generation of discrete random numbers withe arbitrary
distribution.

Version 4.6 Reimplementation of generate_canonical, added sequential random number en-
gines mt19937 and mt19937_64 (Mersenne twister generators). All classes for continuous
random number distributions had been reimplemented as template classes. The tem-
plate parameter determines the result_type and may be float, double or long double,

4

1 TRNG in a nutshell

double is the default template parameter. Bugfixes for several continuous random
number distributions.

Version 4.7 In order to prevent name clashes macros in header file trng/config.hpp have
been put into its own namespace TRNG. Section 6 has been extended to demonstrate how
to write parallel Monte Carlo applications using TRNG and Intel Threading Building
Blocks.

Version 4.8 Performance improvements for split methods of the classes mrgn, mrgns, yarnn,
and yarnns. The computational complexity has been reduced from linear (in the number
of sub-streams) to logarithmic scaling.

Version 4.9 A new random number distribution class hypergeometric_dist and a new ran-
dom number engine class mlcg2_64 have been implemented. Performance improvements
for split methods of the classes lcg64 and lcg64_shift. The computational complexity
has been reduced from linear (in the number of sub-streams) to logarithmic scaling.
Applied various corrections1 and clarifications to the TRNG documentation. TRNG
compiles now with Sun Studio compiler. Starting from version 4.9, the TRNG library is
distributed under the terms of a BSD style license (3-clause license).

Version 4.10 Two additional random number distribution classes twosided_exponential_
dist and truncated_normal_dist have been implemented.

Version 4.11 TRNG starts to support parallel processing on graphics cards via the CUDA
architecture. Various minor improvements.

Version 4.12 Bug fixes and various minor improvements.

Version 4.13 Bug-fix and service release.

Version 4.14 Some minor changes of the class interfaces, bugfix for class binomial_dist.
Starting with version 4.14 we move from the class interface as proposed by [7] to the
class interface of the C++11 standard [21, 22]. These interfaces differ in some details only.
Adopting the C++11 interface for TRNG allows to mix TRNG classes and classes from
the C++11 random number library, see section 6.4 for details.

Version 4.15 Bug-fix and service release. Improvements mainly related to the build system.
The additional random number distribution classes maxwell_dist and beta_dist have
been implemented. New e-mail address trng@mail.de.

Version 4.16 Bug-fix and service release. Some bug fixes for classes discrete_distribution
and beta_dist have been applied. (One of the corresponding bugs appeared in the class
discrete_distribution if the number of weights was a power of 2. The other bugs were
syntactical errors preventing TRNG to compile.) TRNG 4.16 features the new random
number distribution class negative_binomial_dist.

Version 4.17 Bug-fix and service release.

Version 4.18 The additional random number distribution class zero_truncated_poisson_
dist has been implemented.

1Many thanks to Rodney Sparapani.

5

1 TRNG in a nutshell

Version 4.19 Random number engines use internally integer types of exactly 32 bits or 64 bits,
respectively, instead of (unsigned) long int and (unsigned) long long int. New
typedefs for lagged Fibonacci generators have been introduced. The old ones (ending
with _ul or _ull) are architecture dependent and should be considered as depreciated.
This and later versions will not compile on exotic platforms where none of the integer
types int, long int, and long long int has exactly 32 or 64 bits. This version beaks
ABI compatibility to earlier versions but retains source code compatibility.

Version 4.20 Bug-fix and service release.

Version 4.21 Bug-fix and service release. Fixes numerical convergence problems in the inverse
of the incomplete Beta function.

Version 4.22 This maintenance release removes old code for supporting C++ language stan-
dards older than C++11. Many minor code enhancements and bug fixes have been
applied. The autotools-based build system has been replaced by CMake to modernize
the build process and enhance portability, see installation instructions. Many minor code
enhancements and bug fixes. The negative binomial distribution has been generalized to
real-valued parameters.

6

2 Pseudo-random numbers for parallel
Monte Carlo simulations

2.1 Pseudo-random numbers

Monte Carlo methods are a class of computational algorithms for simulating the behavior of
various physical and mathematical systems by a stochastic process. While simulating such a
stochastic process on a computer, large amounts of random numbers are consumed. Actually, a
computer as a deterministic machine is not able to generate random digits. John von Neumann,
pioneer in Monte Carlo simulation, summarized this problem in his famous quote:

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

For computer simulations we have to content ourselves with something weaker than random
numbers, namely pseudo-random numbers. We define a stream of PRNs ri in the following in
an informal manner:

• PRNs are generated by a deterministic rule.
• A stream of PRNs ri cannot be distinguished from a true random sequence by means of

practicable methods applying a finite set of statistical tests on finite samples.

Almost all PRNGs produce a sequence r0, r1, r2, . . . of PRNs by a recurrence

ri = f (ri−1, ri−2, . . . , ri−k) , (2.1)

and the art of random number generation lies in the design of the function f (·). The objective
in PRNG design is to find a transition algorithm f (·) that yields a PRNG with a long period
and good statistical properties within the stream of PRNs. Statistical properties of a PRNG
may be investigated by theoretical or empirical means, see [27]. But experience shows, there is
nothing like an ideal PRNG. A PRNG may behave like a perfect source of randomness in one
kind of Monte Carlo simulation, whereas it may suffer from significant statistical correlations
if it is used in another context, which makes the particular Monte Carlo simulation unreliable.

Numerous recipes for f (·) in (2.1) have been discussed in the literature, see [27, 34] and refer-
ences therein. We will present some popular schemes and review some of theirs mathematical
properties in sections 2.4 and 2.5. Readers how do not want to bother with mathematical
details might skip these sections and may come back later if necessary. However, the next
two sections on the parallelization of PRN sequences and on playing fair present important
concepts of the TRNG library.

2.2 General parallelization techniques for PRNGs

In parallel applications, we need to generate streams tj,i of random numbers. Streams are
numbered by j = 0, 1, . . . , p− 1, where p is the number of processes. We require statistical

7

2 Pseudo-random numbers for parallel Monte Carlo simulations

t

t

t

ri

i

i

i2,

1,

0,

Figure 2.1: Parallelization by block splitting.

t

t

t

ri

i

i

i2,

1,

0,

Figure 2.2: Parallelization by leapfrogging.

independence of the tj,i within each stream and between streams as well. Four different
parallelization techniques are used in practice:

Random seeding: All processes use the same PRNG but a different “random” seed. The hope
is that they will generate non-overlapping and uncorrelated subsequences of the original
PRNG. This hope, however, has no theoretical foundation. Random seeding is a violation
of Donald Knuth’s advice “Random number generators should not be chosen at random”
[27].

Parameterization: All processes use the same type of generator but with different parameters
for each processor. Example: linear congruential generators with additive constant bj for
the jth stream [54]:

tj,i = a · tj,i−1 + bj mod 2e , (2.2)

where bj is the (j + 2)th prime number. Another variant uses different multipliers a
for different streams [40]. The theoretical foundation of these methods is weak, and
empirical tests have revealed serious correlations between streams [44]. On massive
parallel system you may need thousands of parallel streams, and it is not trivial to find a
type of PRNG with thousands of “well tested” parameter sets.

Block splitting: Let M be the maximum number of calls to a PRNG by each processor, and let
p be the number of processes. Then we can split the sequence ri of a sequential PRNG
into consecutive blocks of length M such that

t0,i = ri

t1,i = ri+M

. . .
tp−1,i = ri+M(p−1) .

(2.3)

This method works only if we know M in advance or can at least safely estimate an
upper bound for M. To apply block splitting it is necessary to jump from the ith random
number to the (i + M)th number without calculating all the numbers in between, which
cannot be done efficiently for many PRNGs. A potential disadvantage of this method is
that long range correlations, usually not observed in sequential simulations, may become
short range correlations between sub-streams [45, 13]. Block splitting is illustrated in
Figure 2.1.

8

2 Pseudo-random numbers for parallel Monte Carlo simulations

Leapfrog: The leapfrog method distributes a sequence ri of random numbers over p processes
by decimating this base sequence such that

t0,i = rpi

t1,i = rpi+1

. . .
tp−1,i = rpi+(p−1) .

(2.4)

Leapfrogging is illustrated in Figure 2.2. It is the most versatile and robust method for
parallelization and it does not require an a priori estimate of how many random numbers
will be consumed by each processor. An efficient implementation requires a PRNG that
can be modified to generate directly only every pth element of the original sequence.
Again this excludes many popular PRNGs.

At first glance block splitting and leapfrog seem to be quite different approaches. But in fact,
these are closely related to each other. Because if leapfrog is applied to any finite base sequence
the leapfrog sequences are cyclic shifts of each other. Consider an arbitrary sequence ri with
period T. If gcd(T, p) = 1, all leapfrog sequences t1,i, t2,i, . . . , tp,i) are cyclic shifts of each other,
i. e., for every pair of leapfrog sequences tj1,i and tj2,i of a common base sequence ri with period
T there is a constant s, such that tj1,i = tj2,i+s for all i, and s is at least bT/pc. Furthermore, if
gcd(T, p) = d > 1, the period of each leapfrog sequence equals T/d and there are d classes
of leapfrog sequences. Within a class of leapfrog sequences there are p/d sequences, each
sequence is just a cyclic shift of another and the size of the shift is at least bT/pc.

The first two methods, random seeding and parameterization, have little or no theoretical
backup, but their weakest point is yet another. The results of a simulation should not depend
on the number of processors it runs on. Leapfrog and block splitting do allow to organize
simulations such that the same random numbers are used independently of the number of
processors. With parameterization or random seeding the results will always depend on the
parallelization, see section 6.2 for details. PRNGs that do not support leapfrog and block
splitting should not be used in parallel simulations.

2.3 Playing fair

We say that a parallel Monte Carlo simulation plays fair, if its outcome is strictly independent
of the underlying hardware. Fair play implies the use of the same PRNs in the same context,
independently of the number of parallel processes. It is mandatory for debugging, especially
in parallel environments where the number of parallel processes varies from run to run, but
another benefit of playing fair is even more important: Fair play guarantees that the quality of
a PRNG with respect to an application does not depend on the degree of parallelization.

Obviously the use of parameterization or random seeding prevent a simulation from playing
fair. Leapfrog and block splitting, on the other hand, do allow the use of the same PRNs within
the same context independently of the number of parallel streams.

Consider the site percolation problem. A site in a lattice of size N is occupied with some
probability, and the occupancy is determined by a PRN. M random configurations are gener-
ated. A naive parallel simulation on p processes could split a base sequence into p leapfrog
streams and having each process generate ≈ M/p lattice configurations, independently of the

9

2 Pseudo-random numbers for parallel Monte Carlo simulations

other processes. Obviously this parallel simulation is not equivalent to its sequential version
that consumes PRNs from the base sequence to generate one lattice configuration after another.
The effective shape of the resulting lattice configurations depends on the number of processes.
This parallel algorithm does not play fair.

We can turn the site percolation simulation into a fair playing algorithm by leapfrogging
on the level of lattice configurations. Here each process consumes distinct contiguous blocks
of PRNs form the sequence ri, and the workload is spread over p processors in such a way
that each process analyzes each pth lattice. If we number the processes by their rank i from
0 to p− 1 and the lattices form 0 to M− 1, each process starts with a lattice whose number
equals its own rank. That means process i has to skip i · N PRNs from the sequence ri before
the first lattice configuration is generated. Thereafter each process can skip p− 1 lattices, i. e.,
(p− 1) · N PRNs and continue with the next lattice. In section 6.2 we investigate this approach
in more detail and will give further examples of fair playing Monte Carlo algorithms and their
implementation.

Organizing simulation algorithms such that they play fair is not always as easy as in the
above example, but with a little effort one can achieve fair play in more complicated situations,
too. This may require the combination of block splitting and the leapfrog method, or iterated
leapfrogging. Sometimes it is also necessary to use more than one stream of PRNs per process,
e. g. in the Swendsen Wang cluster algorithm [63, 50] one may use one PRNG to construct the
bond percolation clusters and another PRNG to decide if a cluster has to be flipped.

2.4 Linear recurrences

The majority of the PRNG algorithms that are implemented by TRNG are based on linear
recurrences in prime fields. Thus, we review some of theirs mathematical properties in this
section.

2.4.1 Linear congruential generators

Linear recurrences where introduced as PRNGs by Lehmer [36], who proposed the linear
congruential generator (LCG) with the recurrence

ri = a · ri−1 + b mod m , (2.5)

with a = 23, b = 0, and m = 108 + 1. Obviously, the period of such a generator cannot exceed
m. If b = 0 then period will be at most m − 1, because ri = 0 is a fixed point. In fact, the
original Lehmer generator has a period of only 5 882 352.

The period of a LCG depends on the choice of its parameter. There are two important kinds
of moduli m that allow for a maximal period, namely moduli that are a power of 2 and prime
moduli. For prime moduli, a has to be a generating element of the multiplicative group modulo
m and b = 0. While for power of 2 moduli, a and b must be odd and a− 1 has to be a multiple
of four. These and more theoretical properties of LCGs are presented in [27]

10

2 Pseudo-random numbers for parallel Monte Carlo simulations

Parallelization

One may show by complete induction that the M-fold successive iteration of (2.5) is given by

ri = aM · ri−M + b
M−1

∑
j=0

aj mod m . (2.6)

Note that ∑M−1
j=0 aj may be computed efficiently if M is a power of 2, say M = 2e, because

2e−1

∑
j=0

aj mod m =
e−1

∏
j=0

(
1 + a2j

)
mod m . (2.7)

If M is not a power of two we may use

M−1

∑
j=0

aj mod m =
e−1

∏
j=0

(
1 + a2j

)
+ a2e

M−2e−1

∑
j=0

aj mod m , (2.8)

where e denotes the largest integer such that M ≤ 2e. The recursive application of (2.8) allows
efficient computation of ∑M−1

j=0 aj mod m and, therefore, an efficient implementation of block
splitting and leapfrogging.

2.4.2 Linear feedback shift register sequences

The majority of the PRNG algorithms that are implemented by TRNG are based on so-called
linear feedback shift register sequences. Therefore, we review some of theirs mathematical
properties in this section. Readers how do not want to bother with mathematical details might
skip this as well as the next section on YARN generators and may come back later if necessary.

Knuth [26] proposed a generalization of Lehmer’s method known as multiple recurrence
generator (MRG) that obeys the recurrence

ri = a1ri−1 + a2ri−2 + . . . + anri−n mod m (2.9)

with prime modulus m. In the theory of finite fields, a sequence of type (2.9) is called linear
feedback shift register sequence, or LFSR sequence for short. Note that a LFSR sequence is
fully determined by specifying n coefficients (a1, a2, . . . , an) plus n initial values (r1, r2, . . . , rn).
There is a wealth of rigorous results on LFSR sequences that can (and should) be used to
construct a good PRNG. Here we only discuss a few but important facts without proofs.
A detailed presentation of LFSR sequences including theorems and proofs can be found in
[17, 23, 37, 38, 15, 66].

Since the all zero tuple (0, 0, . . . , 0) is a fixed-point of (2.9), the maximum period of a LFSR
sequence cannot exceed mn − 1. The following theorem tells us precisely how to choose the
coefficients (a1, a2, . . . , an) to achieve this period [27]:

Theorem 1 The LFSR sequence (2.9) over Fm has period mn− 1, if and only if the characteristic
polynomial

f (x) = xn − a1xn−1 − a2xn−2 − . . .− an (2.10)

is primitive modulo m.

11

2 Pseudo-random numbers for parallel Monte Carlo simulations

A monic polynomial f (x) of degree n over Fm is primitive modulo m, if and only if it is
irreducible (i. e., cannot be factorized over Fm), and if it has a primitive element of the extension
field Fmn as one of its roots. The number of primitive polynomials of degree n modulo m
is equal to φ(mn − 1)/n = O (mn/(n ln(n ln m))) [65], where φ(x) denotes Euler’s totient
function. As a consequence a random polynomial of degree n is primitive modulo m with
probability ' 1/(n ln(n ln m)), and finding primitive polynomials reduces to testing whether
a given polynomial is primitive. The latter can be done efficiently, if the factorization of mn − 1
is known [23], and most computer algebra systems offer a procedure for this test.

Theorem 2 Let ri be an LFSR sequence (2.9) with a primitive characteristic polynomial. Then
each k-tuple (ri+1, . . . , ri+k) occurs mn−k times per period for k ≤ n (except the all zero tuple
for k = n).

From this theorem it follows that, if a k-tuple of consecutive numbers with k ≤ n is chosen
randomly from a LFSR sequence, the outcome is uniformly distributed over all possible k-
tuples in Fm. This is exactly what one would expect from a truly random sequence. In terms
of Compagner’s ensemble theory tuples of size less than or equal to n drawn from a LFSR
sequence with primitive characteristic polynomial are indistinguishable from truly random
tuples [10, 11].

Theorem 3 Let ri be an LFSR sequence (2.9) with period T = mn − 1 and let α be a complex
mth root of unity and α its complex conjugated. Then

C(h) :=
T

∑
i=1

αri · αri+h =

{
T if h = 0 mod T
−1 if h 6= 0 mod T

. (2.11)

C(h) can be interpreted as autocorrelation function of the sequence, and Theorem 3 tells us
that LFSR sequences with maximum period have autocorrelations that are very similar to the
autocorrelations of a random sequence with period T. Together with the nice equidistribution
properties (Theorem 2) this qualifies LFSR sequences with maximum period as pseudo-noise
sequences, a term originally coined by Golomb for binary sequences [17, 23].

Parallelization

As a matter of fact, LFSR sequences do support leapfrog and block splitting very well. Block
splitting means basically jumping ahead in a PRN sequence. In the case of LFSR sequences
this can be done quite efficiently. Note, that by introducing a companion matrix A, the linear
recurrence (2.9) can be written as a vector matrix product.

ri−(n−1)
...

ri−1
ri

 =

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
an an−1 . . . a1

︸ ︷︷ ︸

A

ri−n

...
ri−2
ri−1

 mod m (2.12)

12

2 Pseudo-random numbers for parallel Monte Carlo simulations

From this formula it follows immediately that the M-fold successive iteration of (2.9) may be
written as

ri−(n−1)
...

ri−1
ri

 = AM

ri−M−(n−1)

...
ri−M−1
ri−M

 mod m . (2.13)

Matrix exponentiation can be accomplished in O
(
n3 ln M

)
steps via binary exponentiation

(also known as exponentiation by squaring).
Implementing leapfrogging efficiently is less straightforward. Calculating tj,i = rpi+j via

rpi+j−(n−1)
...

rpi+j−1
rpi+j

 = Ap

rp(i−1)+j−(n−1)

...
rp(i−1)+j−1
rp(i−1)+j

 mod m (2.14)

is no option, because Ap is usually a dense matrix, in which case calculating a new element
from the leapfrog sequence requires O

(
n2) operations instead of O (n) operations in the base

sequence.
The following theorem assures that the leapfrog subsequences of LFSR sequences are again

LFSR sequences [23]. This will provide us with a very efficient way to generate leapfrog
sequences.

Theorem 4 Let ri be a LFSR sequence based on a primitive polynomial of degree n with period
mn − 1 (pseudo-noise sequence) over Fm, and let (t) be the decimated sequence with lag p > 0
and offset j, e. g.

tj,i = rpi+j . (2.15)

Then tj,i is a LFSR sequence based on a primitive polynomial of degree n, too, if and only if p
and mn − 1 are coprime, e. g. gcd(mn − 1, p) = 1. In addition, ri and tj,i are not just cyclic shifts
of each other, except when

p = mh mod (mn − 1) (2.16)

for some 0 ≤ h < n. If gcd(mn − 1, p) > 1 the sequence tj,i is still a LFSR sequence, but not a
pseudo-noise sequence.

It is not hard to find prime numbers m such that mn − 1 has very few (and large) prime factors.
For such numbers, the leapfrog method yields pseudo-noise sequences for any reasonable
number of parallel streams [5]. While Theorem 4 ensures that leapfrog sequences are not just
cyclic shifts of the base sequence (unless (2.16) holds), the leapfrog sequences are cyclic shifts
of each other, see section 2.2.

Theorem 4 tells us that all leapfrog sequences of a LFSR sequence of degree n can be
generated by another LFSR of degree n or less. The following theorem gives us a recipe to
calculate the coefficients (b1, b2, . . . , bn) of the corresponding leapfrog feedback polynomial.

Theorem 5 Let ti be a (periodic) LFSR sequence over the field Fm and f (x) its characteristic
polynomial of degree n. Then the coefficients (b1, b2, . . . , bn) of f (x) can be computed from 2n

13

2 Pseudo-random numbers for parallel Monte Carlo simulations

successive elements of ti by solving the linear system
ti+n

ti+n+1
...

ti+2n−1

 =

ti+n−1 . . . ti+1 ti
ti+n . . . ti+2 ti+1

...
. . .

...
...

ti+2n−2 . . . ti+n ti+n−1

b1
b2
...

bn

 mod m (2.17)

over Fm.

Starting from the base sequence we determine 2n values of the sequence ti by applying the
leapfrog rule. Then we solve (2.17) by Gaussian elimination to get the characteristic polynomial
for a new LFSR generator that yields the elements of the leapfrog sequence directly with each
call. If the matrix in (2.17) is singular, the linear system has more than one solution, and it
is sufficient to pick one of them. In this case it is always possible to generate the leapfrog
sequence by a LFSR of degree less than the degree of the original sequence.

Choice of modulus

LFSR sequences can be defined over any prime field. In particular LFSR sequences over F2
with sparse feedback polynomials are popular sources of PRNs [25, 67, 27] and generators of
this type can be found in various software libraries. This is due to the fact that multiplication
in F2 is trivial, addition reduces to exclusive-or and the modulo operation comes for free.
As a result, generators that operate in F2 are extremely fast. Unfortunately, these generators
suffer from serious statistical defects [14, 18, 61, 67] that can be blamed to the small size of
the underlying field [3]. In parallel applications we have the additional drawback that, if the
leapfrog method is applied to a LFSR sequence with sparse characteristic polynomial, the new
sequence will have a dense polynomial. The computational complexity of generating values
of the LFSR sequence grows from O (1) to O (n). Remember that for generators in F2, n is
typically of order 1000 or even larger to get a long period 2n − 1 and reasonable statistical
properties.

The theorems and parallelization techniques we have presented so far do apply to LFSR
sequences over any finite field Fm. Therefore we are free to choose the prime modulus m. In
order to get maximum entropy on the macrostate level [47] m should be as large as possible. A
good choice is to set m to a value that is of the order of the largest representable integer of the
computer. If the computer deals with e-bit registers, we may write the modulus as m = 2e − k,
with k reasonably small. In fact if k(k + 2) ≤ m modular reduction can be done reasonably fast
by a few bit-shifts, additions and multiplications, see chapter 7. Furthermore a large modulus
allows us to restrict the degree of the LFSR to rather small values, e. g. n ≈ 4, while the PRNG
has a large period and good statistical properties.

In accordance with Theorem 4, a leapfrog sequence of a pseudo-noise sequence is a pseudo-
noise sequence, too, if and only if its period mn − 1 and the lag p are coprime. For that reason
mn − 1 should have a small number of prime factors. It can be shown that mn − 1 has at
least three prime factors and if the number of prime factors does not exceed three, then m is
necessarily a Sophie-Germain Prime and n a prime larger than two [5].

To sum up, the modulus m of a LFSR sequence should be a Sophie-Germain Prime, such
that mn − 1 has not more than three prime factors and such that m = 2e − k and k(k + 2) ≤ m
for some integers e and k.

14

2 Pseudo-random numbers for parallel Monte Carlo simulations

2.5 Non-linear transformations and YARN sequences

LFSR sequences over prime fields with a large prime modulus seem to be ideally suited as
PRNGs. They have, however, a well known weakness. When used to sample coordinates
in d-dimensional space, pseudo-noise sequences cover every point for d < n, and every
point except (0, 0, . . . , 0) for d = n. For d > n the set of positions generated is obviously
sparse, and the linearity of the production rule (2.9) leads to the concentration of the sampling
points on n-dimensional hyper-planes [19, 31], see also Figure 2.3. This phenomenon, first
noticed by Marsaglia in 1968 [39], constitutes one of the well known tests of randomness
applied to PRNGs, the so-called spectral test [27]. The spectral test checks the behavior of
a generator when its outputs are used to form d-tuples. Closely related to this mechanism
are the observed correlations in other empirical tests like the birthday spacings test and the
collision test [33, 35]. Non-linear generators do quite well in all these tests, but compared to
LFSR sequences they have much less nice and provable properties and they are not suited for
fair playing parallelization.

To get the best of both worlds we propose a delinearization that preserves all the nice
properties of linear pseudo-noise sequences. That means each element of a linear pseudo-noise
sequence qi ∈ Fm is transformed to another element in Fm by a non-linear bijective mapping.
If m is prime, such a bijective mapping is given by an exponentiation.

Theorem 6 Let ri be a pseudo-noise sequence in Fm, and let g be a generating element of the
multiplicative group F∗m. Then the sequence qi with

qi =

{
gri mod m if ri > 0
0 if ri = 0

(2.18)

is a pseudo-noise sequence, too.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r
i
/1999

r
i+

1
/

1
9
9
9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q
i
/1999

q i+
1
/

1
9
9
9

Figure 2.3: Exponentiation of a generating element in a prime field is an effective way to destroy
the linear structures of LFSR sequences. Both pictures show the full period of the generator. Left:
ri = 95 · ri−i mod 1999. Right: qi = 1099ri mod 1999 with ri = 95 · ri−i mod 1999.

15

2 Pseudo-random numbers for parallel Monte Carlo simulations

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

l/T

L
(q

)(l
)/

T

l/(2T)
linear complexity profile

Figure 2.4: Linear complexity profile L(q)(l) of a YARN sequence, produced by the recurrence ri =

173 · ri−1 + 219 · ri−2 mod 317 and qi = 151ri mod 317. The period of this sequence equals T = 3172 − 1.

The proof of this theorem is trivial: since g is a generator of F∗m, the map (2.18) is bijective.
We call delinearized generators based on Theorem 6 YARN generators (yet another random
number).

The linearity is completely destroyed by the map (2.18), see Figure 2.3. Let L(r)(l) denote
the linear complexity of the subsequence (r1, r2, . . . , rl). This function is known as the linear
complexity profile of ri. For a truly random sequence it grows on average like l/2. Figure 2.4
shows the linear complexity profile L(r)(l) of a typical YARN sequence. It shows the same
growth rate as a truly random sequence up to the point where more than 99 % of the period
have been considered. Sharing the linear complexity profile with a truly random sequence, we
may say that the YARN generator is as non-linear as it can get.

The non-linear transform by exponentiation in Theorem 6 has to be carried out in a prime
field Fm. If the underlying generator produces integers in some range [0, m), where m is not
prime (i. e. a power of two), another kind of non-linear transformation has to be applied to
improve the underlying generator. For m = 2e Press et al. [55] suggest to transform the output
ri of a base generator by

ti,0 = ri

ti,1 = ti,0 ⊕ (ti,0 � a0)

ti,2 = ti,1 ⊕ (ti,1 � a1)

ti,3 = ti,2 ⊕ (ti,2 � a2)

qi = ti,3

(2.19)

where ⊕ denotes binary addition (exclusive-or), x � n bit-shift of x to the right of size n and
x � n bit-shift of x to the left of size n, respectively. The parameters a0, a1 and a2 have to be
chosen suitable to make (2.19) a bijective mapping from ri to qi, see [55]. Figure 2.5 shows how
the mapping (2.19) efficiently destroys the lattice structures of linear congruential generators
modulo a power on two.

16

2 Pseudo-random numbers for parallel Monte Carlo simulations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r
i
/2048

r
i+

1
/

2
0
4
8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q
i
/2048

q i+
1
/

2
0
4
8

Figure 2.5: The non-linear mapping (2.19) destroys the lattice structures of linear congruential genera-
tors. Both pictures show the full period of the generator. Left: ri = 9 · ri−i + 1 mod 2048. Right: qi given
by (2.19) with a0 = 5, a1 = 9, a2 = 2 and ri = 9 · ri−i + 1 mod 2048.

17

3 Basic concepts

The TRNG library consists of a loose bunch of classes. These classes can be divided into to
kinds of classes, random number engines and random number distributions.

Random number engines are the workhorses of TRNG. Each random number engine im-
plements some algorithm that is used to produce pseudo-random numbers. The notion of a
random number engine as it is used by TRNG was introduced by [7] and it is a very general
concept. For example the random number engine concept does not specify what kind of
pseudo-random numbers (integers, floating point numbers or just bits) are generated. All
random number engine classes of TRNG implement the concept of a random number engine
as introduced in [7]. However, as a library of parallel random number generators TRNG
extends the notion of a random number engine to a parallel random number engine. To fulfill the
requirements of a parallel random number engine, a class has to fulfill all the requirements of a
random number engine and in addition some further requirements that make them applicable
for parallel Monte Carlo simulations. The random number engine concept and the parallel
random number engine concept will be discussed in detail in section 3.1.

A random number engine is not very useful by itself. To write some real world Monte
Carlo applications we need random number distribution classes, too. A random number
distribution class converts the output of an arbitrary random number engine into a pseudo-
random number with some specific distribution. The general concept of a random number
distribution is discussed in section 3.2.

Note that the design of TRNG is based on a proposal for the upcoming revision of the
C++ standard [7]. However, this new standard is still work in progress and the random
number generator library of the upcoming revision of the C++ standard will differ from this
proposal. We will make TRNG compatible with the random number generator library of the
new C++ standard as soon as this standard has been approved and compilers that implement
the necessary new language features are available. The concepts that will be introduced in the
next sections will be subject to minor modifications.

3.1 Random number engines

To be a random number engine, a class has to fulfill a set of requirements that we will sum-
marize as follows, see [7] for details. A class X satisfies the requirements of a random number
engine, if the expressions as shown in Table 3.1 are valid and have the indicated semantics. In
that table and throughout this section,

• T is the type named by X’s associated result_type;
• t is a value of T;
• u is a value of X, v is an lvalue of X, x and y are (possibly const) values of X;
• s is a value of integral type;
• g is an lvalue, of a type other than X, that defines a zero-argument function object

returning values of type unsigned long;

18

3 Basic concepts

Table 3.1: Random number engine requirements.

expression return type pre/post-condition complexity

X::result_type T T is an arithmetic type other than bool. compile-time

u() T Sets the state to ui+1 = TA(ui) and returns
GA(ui). If X is integral, returns a value in the
closed interval [X::min, X::max]; otherwise, re-
turns a value in the open interval (0, 1).

amortized con-
stant

X::min T, if X is in-
tegral; other-
wise int.

If X is integral, denotes the least value poten-
tially returned by operator(); otherwise de-
notes 0.

compile-time

X::max T, if X is in-
tegral; other-
wise int.

If X is integral, denotes the greatest value po-
tentially returned by operator(); otherwise de-
notes 1.

compile-time

X() Creates an engine with the same initial state as
all other default-constructed engines of type X.

O (size of state)

X(s) Creates an engine with initial state determined
by static_cast<unsigned long>(s).

O (size of state)

X(g) Creates an engine with initial state determined
by the results of successive invocations of g.
Throws what and when g throws.

O (size of state)

u.seed() void post: u==X() same as X()

u.seed(s) void post: u==X(s) same as X(s)

u.seed(g) void post: If g does not throw, u==v, where the state
of v is as if constructed by X(g). Otherwise, the
exception is re-thrown and the engine s state is
deemed invalid. Thereafter, further use of u is
undefined except for destruction or invoking a
function that establishes a valid state.

same as X(g)

x==y bool With Sx and Sy as the infinite sequences of val-
ues that would be generated by repeated calls
to x() and y(), respectively, returns true if
Sx = Sy; returns false otherwise.

O (size of state)

x!=y bool !(x==y) O (size of state)

• os is an lvalue of the type of some class template specialization std::basic_ostream
<charT, traits>; and
• is is an lvalue of the type of some class template specialization std::basic_istream
<charT, traits>.

A random number engine object x has at any given time a state xi for some integer i ≥ 0. Upon
construction, a random number engine x has an initial state x0. The state of an engine may
be established by invoking its constructor, seed member function, operator=, or a suitable
operator>>.

The specification of each random number engine defines the size of its state in multiples of
the size of its result_type, given as an integral constant expression. The specification of each

19

3 Basic concepts

Table 3.1: Random number engine requirements continued.

expression return type pre/post-condition complexity

os << x reference to
the type of
os

With os.fmtflags set to std::ios_base::dec|
std::ios_base::fixed|std::ios_base::
left and the fill character set to the space char-
acter, writes to os the textual representation
of x’s current state. In the output, adjacent
numbers are separated by one or more space
characters. post: The os.fmtflags and fill
character are unchanged.

O (size of state)

is >> v reference to
the type of
is

Sets v’s state as determined by reading its tex-
tual representation from is. If bad input is en-
countered, ensures that v’s state is unchanged
by the operation and calls is.setstate(std::
ios::failbit) (which may throw std::ios::
failure). pre: The textual representation was
previously written using an os whose imbued
locale and whose type’s template specialization
arguments charT and traits were the same
as those of is. post: The is.fmtflags are un-
changed.

O (size of state)

Table 3.2: Parallel random number engine requirements.

expression return type pre/post-condition complexity

split(p, s) void pre: s and p are of type unsigned int with
s < p. If s ≥ p an exception std::invalid_
argument is thrown.
post: Internal parameters of the random num-
ber engine are changed in such a way that fu-
ture calls to operator() will generate the sth
sub-stream of p sub-streams. Sub-streams are
numbered from 0 to p− 1. The complexity of
operator() will not change.

polynomial in
size of state, (at
most) linear in
p and s

jump2(s) void pre: s is of type unsigned int.
post: Internal state of the random number en-
gine is changed in such a way that the engine
jumps 2s steps ahead.

polynomial in
size of state and
s

jump(s) void pre: s is of type unsigned long long.
post: Internal state of the random number en-
gine is changed in such a way that the engine
jumps s steps ahead.

polynomial in
size of state and
the logarithm of
s

20

3 Basic concepts

random number engine also defines

• the transition algorithm TA by which the state xi of an engine is advanced to its successor
state xi+1, and
• the generation algorithm GA by which the state of an engine is mapped to a value of type
result_type.

Furthermore, a random number engine shall fulfill the requirements of the concepts “Copy-
Constructible” and of “Assignable”. That means roughly, random number engines support
copy and assignment operations with the same semantic like build-in types as int or double.
Copy construction and assignment shall each be of complexity O (size of state).

Random number engine requirements had been adopted from [7]. For parallel Monte Carlo
applications we extend the concept of a random number engine to a parallel random number
engine. Such an engine has to meet all the requirements of a parallel random number engine
and additionally the requirements shown in Table 3.2.

A parallel random number engine provides block splitting and leapfrog. It is demanded
that leapfrog is implemented in such a way that the complexity of operator() will not depend
on how many sub-streams a stream has been split into. That means, a valid implementation
of leapfrog will not just calculate all random numbers of a stream and then throw away
bunches of numbers to derive the random numbers of a leapfrog sub-stream. This rather
strong requirement restricts the number of pseudo-random number generator algorithms that
are proper for parallel random number engines. But LFSR sequences and YARN generators,
which had been discussed in sections 2.4.2 and 6, meet these conditions easily.

3.2 Random number distributions

To model the concept of a random number distribution a class has to fulfill a set of requirements
that we will summarize as follows, refer to [7] for details. A class X satisfies the requirements
of a random number distribution if the expressions shown in Table 3.3 are valid and have the
indicated semantics, and if X and its associated types also satisfies all other requirements of
this section. In that table and throughout this section,

• T is the type named by X’s associated result_type;
• P is the type named by X’s associated param_type;
• u is a value of X and x is a (possibly const) value of X;
• glb and lub are values of T respectively corresponding to the greatest lower bound

and the least upper bound on the values potentially returned by u’s operator(), as
determined by the current values of u’s parameters;
• p is a value of P;
• e is an lvalue of an arbitrary type that satisfies the requirements of a uniform random

number generator;
• os is an lvalue of the type of some class template specialization basic_ostream<charT,
traits>; and
• is is an lvalue of the type of some class template specialization basic_istream<charT,
traits>.

The specification of each random number distribution identifies an associated mathematical
probability density function p(z) or an associated discrete probability function P(zi). Such functions

21

3 Basic concepts

are typically expressed using certain externally supplied quantities known as the parameters
of the distribution. Such distribution parameters are identified in this context by writing,
for example, p(z|a, b) or P(zi|a, b), to name specific parameters, or by writing, for example,
p(z|{p}) or P(zi|{p}), to denote the parameters p of a distribution taken as a whole.

Furthermore a random number distribution shall fulfill the requirements of the concepts
“CopyConstructible” and of “Assignable”. That means roughly, random number distributions
support copy and assignment operations with the same semantic like build-in types like int
or double. Copy construction and assignment shall each be of complexity O (size of state).

For each of the constructors of X taking arguments corresponding to parameters of the
distribution, P shall have a corresponding constructor subject to the same requirements and
taking arguments identical in number, type, and default values. Moreover, for each of the
member functions of X that return values corresponding to parameters of the distribution, P
shall have a corresponding member function with the identical name, type, and semantics.

22

3 Basic concepts

Table 3.3: Random number distribution requirements.

expression return type pre/post-condition complexity

X::result_type T T is an arithmetic type. compile-time

X::param_type P compile-time

X(p) Creates a distribution whose behavior is indis-
tinguishable from that of a distribution newly
constructed directly from the values used to
construct p.

same as p’s con-
struction

u.reset() void Subsequent uses of u do not depend on values
produced by e prior to invoking reset.

constant

x.param() P Returns a value p such that X(p).param()==p. no worse than
the complexity
of X(p)

u.param(p) void post: u.param() == p. no worse than
the complexity
of X(p)

u(e) T With p=u.param(), the sequence of numbers re-
turned by successive invocations with the same
object e is randomly distributed according to
the associated p(z|{p}) or P(zi|{p}) function.

amortized con-
stant number of
invocations of e

u(e,p) T The sequence of numbers returned by succes-
sive invocations with the same objects e and p
is randomly distributed according to the asso-
ciated p(z|{p}) or P(zi|{p}) function

x.min() T Returns glb. constant

x.max() T Returns lub. constant

os << x reference to
the type of
os

Writes to os a textual representation for the pa-
rameters and the additional internal data of x.
post: The os.fmtflags and fill character are un-
changed.

is >> u reference to
the type of
is

Restores from is the parameters and additional
internal data of u. If bad input is encountered,
ensures that u’s state is unchanged by the op-
eration and calls is.setstate(ios::failbit)
(which may throw std::ios::failure).
pre: is provides a textual representation that
was previously written using an os whose im-
bued locale and whose type’s template special-
ization arguments charT and traits were the
same as those of is.
post: The is.fmtflags are unchanged.

23

4 TRNG classes

In chapter 3 the abstract concepts of (parallel) random number engines and random number
distributions had been introduced. Now we look at some actual realizations of these concepts.
TRNG provides several (parallel) random number engines and random number distributions.
Each engine and each distribution is implemented by its own class that resides in the name
space trng.

4.1 Random number engines

In this section we give a detailed documentation of all random number engines. Each subsec-
tion describes the public interface of one random number engine and focuses on aspects that
are specific for a particular random number engine. This includes extensions to the random
number engine interface as well as algorithmic details. The part of the public interface, that is
mandatory for each (parallel) random number engine, will not be discussed in detail. Read
section 3.1 instead. Table 4.1 gives an overview over all random number engines of TRNG.

All classes that will be describe in this section model either a random number engine or a
parallel random number engine and therefore fulfill the requirements introduced in section 3.1.
But for convenience their interface provides even more. For example all random number
engines model a random number generator as well. The notion of a random number generator
had been introduced by the C++ Standard Template Library. A random number generator is a
class that provides an operator()(long) that returns a uniformly distributed random integer
larger than or equal to zero but less than its argument. That makes TRNG (parallel) random
number engines applicable to the STL algorithm std::random_shuffle. Additionally TRNG
(parallel) random number engines provide a function name() that returns a string with the
name of the random number engine.

4.1.1 Linear congruential generators

The classes trng::lcg64 and trng::lcg64_shift implement linear congruential generators.
Both generators are based on the transition algorithm [36, 27]

ri+1 = a · ri + b mod 264 .

The state of this generator at time i is given by ri. Its period equals 264 if and only if b is odd and
a mod 4 = 1 [27]. The statistical properties of linear congruential generators depend crucial on
the choice of the multiplier a, which has to be chosen carefully.

This linear congruential generator trng::lcg64 is the quick and dirty generator of TRNG.
It’s dammed fast, see section 7, but even for proper chosen parameters a and b the lower bits
of ri are less random than the higher order bits. The class trng::lcg64 should be avoided
whenever the randomness of lower bits have a significant impact to the simulation. In [30]
L’Ecuyer warns about multiplicative linear congruential generators (in the quotation denoted
as MLCG) with ri+1 = a · ri mod m:

24

4 TRNG classes

Table 4.1: Random number engines of TRNG.

random number
engine description concept

trng::lcg64 linear congruential generator with modulus 264 parallel random
number engine

trng::lcg64_shift linear congruential generator with modulus 264 with
additional bit-shift transformation

parallel random
number engine

trng::mrgn multiple recurrence generator based on a linear feed-
back shift register sequence over F231−1 of depth n

parallel random
number engine

trng::mrgns multiple recurrence generator based on a linear feed-
back shift register sequence over Fm of depth n, with
m being a Sophie-Germain Prime

parallel random
number engine

trng::yarnn YARN sequence based on a linear feedback shift
register sequence over F231−1 of depth n

parallel random
number engine

trng::yarnns YARN sequence based on a linear feedback shift
register sequence over Fm of depth n, with m being
a Sophie-Germain Prime

parallel random
number engine

trng::lagfibnxor lagged Fibonacci generator with n feedback taps
and exclusive-or operation

random number
engine

trng::lagfibnplus lagged Fibonacci generator with n feedback taps
and addition

random number
engine

trng::mt19937 Mersenne twister generating 32 random bits random number
engine

trng::mt19937_64 Mersenne twister generating 64 random bits random number
engine

“If m = 2e where e is the number of bits on the computer word, and if one can
use unsigned integers without overflow checking, the products modulo m are easy
to compute: just discard the overflow. This is quick and simple. For that reason,
MLCGs with moduli of this form are used abundantly in practice, despite their
serious drawbacks. Some nuclear physicists, for instance, perform simulations that
use billions of random numbers on supercomputers and are quite reluctant to give
up using them [. . .]. Usually, they also generate many substreams in parallel. In
view of the above remarks, all this appears dangerous. Perhaps some people like
playing with fire.”

The same warning applies if b 6= 0. In spite of its weakness this generator is well suited for a
large classes of generic Monte Carlo schemes, e. g. simulating a (biased) coin or cluster Monte
Carlo [14].

But in some kinds of simulations linear congruential generators reveal their weakness, i. e.
their lattice structure, see left part of Figure 2.5. Class trng::lcg64_shift is based on the

25

4 TRNG classes

recursion
ri+1 = a · ri + b mod 264 ,

too, but it destroys the lattice structure of ri by the non-linear transformation

ti,0 = ri

ti,1 = ti,0 ⊕ (ti,0 � 17)
ti,2 = ti,1 ⊕ (ti,1 � 31)
ti,3 = ti,2 ⊕ (ti,2 � 8)
qi = ti,3

where ⊕ denotes binary addition (exclusive-or), x � n bit-shift of x to the right of size n and
x � n bit-shift of x to the left of size n, respectively. Class trng::lcg64_shift is only slightly
slower than trng::lcg64 but the statistical quality is considerably increased by the non-linear
transformation.

The class trng::lcg64 is declared in the header file trng/lcg64.hpp and its public interface
is given as follows:

namespace trng {

class lcg64 {
public:

First the necessary type, static class constants, and the call operator are declared.

typedef unsigned long long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

We also define some parameter and status classes that will be used internally and by the
constructor.

class parameter_type;
class status_type;

TRNG provides four parameter sets for a and b, which are chosen to give good statistical
properties. Three of these are taken from [32], the default parameter set had been found by the
author of TRNG.

a = 18 145 460 002 477 866 997 , b = 1

static const parameter_type Default;

a = 2 862 933 555 777 941 757 , b = 1

static const parameter_type LEcuyer1;

a = 3 202 034 522 624 059 733 , b = 1

static const parameter_type LEcuyer2;

a = 3 935 559 000 370 003 845 , b = 1

26

4 TRNG classes

static const parameter_type LEcuyer3;

An instance of class trng::lcg64 can be instantiated by various constructors as specified for a
random number engine. Additionally a non-default parameter set may be given.

explicit lcg64(parameter_type=Default);
explicit lcg64(unsigned long, parameter_type=Default);
template<typename gen>
explicit lcg64(gen &, parameter_type P=Default);

Class trng::lcg64 provides all necessary seeding functions (see Table 3.1) and an additional
function that sets ri.

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(unsigned long long);

The following three methods are necessary for a parallel random number engine.

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

Furthermore the class trng::lcg64 provides a function that returns the string lcg64 and an
operator operator().

static const char * name();
long operator()(long);

};

Random number engines are comparable and can be written to or read from a stream.

bool operator==(const lcg64 &, const lcg64 &);
bool operator!=(const lcg64 &, const lcg64 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lcg64 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lcg64 &);

}

Class trng::lcg64_shift provides the same public interface as trng::lcg64.

namespace trng {

class lcg64_shift {
public:
typedef unsigned long long result_type;
result_type operator()();
static const result_type min;
static const result_type max;
class parameter_type;
class status_type;
static const parameter_type Default;
static const parameter_type LEcuyer1;

27

4 TRNG classes

static const parameter_type LEcuyer2;
static const parameter_type LEcuyer3;
explicit lcg64_shift(parameter_type=Default);
explicit lcg64_shift(unsigned long, parameter_type=Default);
template<typename gen>
explicit lcg64_shift(gen &, parameter_type P=Default);
void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(unsigned long long);
void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);
static const char * name();
long operator()(long);

};

bool operator==(const lcg64_shift &, const lcg64_shift &);
bool operator!=(const lcg64_shift &, const lcg64_shift &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lcg64_shift &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lcg64_shift &);

}

4.1.2 Multiple recursive generators

TRNG offers several multiple recursive generators based on LFSR sequences over prime fields
Fm with different numbers of feedback taps. These are implemented by the classes trng::mrg2,
trng::mrg3, trng::mrg3s, trng::mrg4, trng::mrg5, and trng::mrg5s. Table 4.2 summarizes
the key features of these classes. The transition algorithm of a multiple recursive generator
with n feedback taps reads

ri = a1 · ri−1 + a2 · ri−2 + . . . + an · rn−2 mod m .

The state of this generator at time i is given by (ri−1, ri−2, . . . , ri−n). See section 2.4.2 for details
on LFSR sequences.

The prime modulus m that characterizes the prime field Fm was either chosen as the Mer-
senne Prime (classes trng::mrgn) or a Sophie-Germain Prime such that mn − 1 has as few
prime factors as possible (classes trng::mrgns). The former choice gives us some performance
benefits, see section 7.1, whereas the second has some theoretical advantages, see section 2.4.2.

The classes trng::mrgn and trng::mrgns implement the interface described in section 3.1.
Each class defines some parameter and status classes that will be used internally and by the
constructor. Furthermore for each generator several parameter sets are given, see Table 4.3.
Most of the parameter sets are taken from [31] and chosen to give generators with good
statistical properties.

An instance of a class trng::mrgn or trng::mrgns can be instantiated by various constructors
as specified for a random number engine. Additionally a non-default parameter set may be
chosen. The classes trng::mrgn and trng::mrgns provide all necessary seeding functions

28

4 TRNG classes

(see Table 3.1) and additionally a function that sets the internal state (ri−1, ri−2, . . . , ri−n). This
function should never be called with all arguments set to zero. The classes trng::mrgn and
trng::mrgns model the concept of a parallel random number engine and therefore the methods

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

are implemented. Furthermore the classes trng::mrgn or trng::mrgns provide a function
that returns a string with its name and an operator operator(). Random number engines are
comparable and can be written to or read from a stream.

The detailed interface of the classes trng::mrgn or trng::mrgns is given as follows:

namespace trng {

class mrg2 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit mrg2(parameter_type=LEcuyer1);
explicit mrg2(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg2(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const mrg2 &, const mrg2 &);
bool operator!=(const mrg2 &, const mrg2 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg2 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg2 &);

}

29

4 TRNG classes

Ta
bl

e
4.

2:
K

ey
fe

at
ur

es
of

m
ul

ti
pl

e
re

cu
rs

iv
e

ge
ne

ra
to

r
cl

as
se

s.

he
ad

er
fe

ed
ba

ck
pr

im
e

re
tu

rn
va

lu
e

cl
as

s
fil

e
ta

ps
n

fie
ld

F
m

pe
ri

od
of

na
me

()

tr
ng

::
mr

g2
tr

ng
/m

rg
2.

hp
p

2
F

23
1 −

1
m

2
−

1
≈

262
≈

4.
61
·1

018
mr

g2
tr

ng
::

mr
g3

tr
ng

/m
rg

3.
hp

p
3

F
23

1 −
1

m
3
−

1
≈

293
≈

9.
90
·1

027
mr

g3
tr

ng
::

mr
g3

s
tr

ng
/m

rg
3s

.h
pp

3
F

23
1 −

21
06

9
m

3
−

1
≈

293
≈

9.
90
·1

027
mr

g3
s

tr
ng

::
mr

g4
tr

ng
/m

rg
4.

hp
p

4
F

23
1 −

1
m

4
−

1
≈

212
4
≈

2.
13
·1

037
mr

g4
tr

ng
::

mr
g5

tr
ng

/m
rg

5.
hp

p
5

F
23

1 −
1

m
5
−

1
≈

215
5
≈

4.
57
·1

046
mr

g5
tr

ng
::

mr
g5

s
tr

ng
/m

rg
5s

.h
pp

5
F

23
1 −

22
64

1
m

5
−

1
≈

215
5
≈

4.
57
·1

046
mr

g5
s

Ta
bl

e
4.

3:
Pa

ra
m

et
er

se
ts

fo
r

m
ul

ti
pl

e
re

cu
rs

iv
e

ge
ne

ra
to

rs
.

pa
ra

m
et

er
se

t
a 1

a 2
a 3

a 4
a 5

tr
ng

::
mr

g2
::

LE
cu

ye
r1

1
49

8
80

9
82

9
1

16
0

99
0

99
6

tr
ng

::
mr

g2
::

LE
cu

ye
r2

46
32

5
1

08
4

58
7

tr
ng

::
mr

g3
::

LE
cu

ye
r1

2
02

1
42

2
05

7
1

82
6

99
2

35
1

1
97

7
75

3
45

7
tr

ng
::

mr
g3

::
LE

cu
ye

r2
1

47
6

72
8

72
9

0
1

15
5

64
3

11
3

tr
ng

::
mr

g3
::

LE
cu

ye
r3

65
33

8
0

64
63

6
tr

ng
::

mr
g3

s:
:t

rn
g0

2
02

5
21

3
98

5
1

11
2

95
3

67
7

2
03

8
96

9
60

1
tr

ng
::

mr
g3

s:
:t

rn
g1

1
28

7
76

7
37

0
1

04
5

93
1

77
9

58
15

0
10

6
tr

ng
::

mr
g4

::
LE

cu
ye

r1
2

00
1

98
2

72
2

1
41

2
28

4
25

7
1

15
5

38
0

21
7

1
66

8
33

9
92

2
tr

ng
::

mr
g4

::
LE

cu
ye

r2
64

88
6

0
0

64
32

2
tr

ng
::

mr
g5

::
LE

cu
ye

r1
10

7
37

4
18

2
0

0
0

10
4

48
0

tr
ng

::
mr

g5
s:

:t
rn

g0
1

05
3

22
3

37
3

1
53

0
81

8
11

8
1

61
2

12
2

48
2

13
3

49
7

98
9

57
3

24
5

31
1

tr
ng

::
mr

g5
s:

:t
rn

g1
2

06
8

61
9

23
8

2
13

8
33

2
91

2
67

1
75

4
16

6
1

44
2

24
0

99
2

1
52

6
95

8
81

7

30

4 TRNG classes

namespace trng {

class mrg3 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;
static const parameter_type LEcuyer3;

explicit mrg3(parameter_type=LEcuyer1);
explicit mrg3(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg3(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const mrg3 &, const mrg3 &);
bool operator!=(const mrg3 &, const mrg3 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg3 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg3 &);

}

namespace trng {

class mrg3s {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

31

4 TRNG classes

static const parameter_type trng0;
static const parameter_type trng1;

explicit mrg3s(parameter_type=trng0);
explicit mrg3s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit mrg3s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const mrg3s &, const mrg3s &);
bool operator!=(const mrg3s &, const mrg3s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg3s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg3s &);

}

namespace trng {

class mrg4 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit mrg4(parameter_type=LEcuyer1);
explicit mrg4(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg4(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type);

32

4 TRNG classes

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const mrg4 &, const mrg4 &);
bool operator!=(const mrg4 &, const mrg4 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg4 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg4 &);

}

namespace trng {

class mrg5 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;

explicit mrg5(parameter_type=LEcuyer1);
explicit mrg5(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit mrg5(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const mrg5 &, const mrg5 &);
bool operator!=(const mrg5 &, const mrg5 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg5 &);

33

4 TRNG classes

template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg5 &);

}

namespace trng {

class mrg5s {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type trng0;
static const parameter_type trng1;

explicit mrg5s(parameter_type=trng0);
explicit mrg5s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit mrg5s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const mrg5s &, const mrg5s &);
bool operator!=(const mrg5s &, const mrg5s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mrg5s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mrg5s &);

}

4.1.3 YARN generators

The classes trng::yarnn and trng::yarnns implement so-called YARN generators (yet an-
other random number generator). Table 4.4 summarizes the key features of these classes.
Each of them is based on a multiple recursive generator with n feedback taps, for which the

34

4 TRNG classes

transition algorithm reads

ri = a1 · ri−1 + a2 · ri−2 + . . . + an · ri−n mod m .

The state of this generator at time i is given by (ri−1, ri−2, . . . , ri−n). See section 2.4.2 for details
on LFSR sequences.

The prime modulus m that characterizes the prime field Fm was either chosen as the Mer-
senne Prime (classes trng::mrgn) or a Sophie-Germain Prime such that mn − 1 has as few
prime factors as possible (classes trng::mrgns). The former choice gives us some performance
benefits, see section 7.1, whereas the second has some theoretical advantages, see section 2.4.2.

While pure multiple recursive generators return the ri as pseudo-random numbers directly,
a YARN generator “shuffles” the output of the underlying multiple recursive generator by a
bijective mapping. In the case of a YARN generator with modulus m this mapping reads

qi =

{
bri mod m if ri > 0
0 if ri = 0

,

where b is a generating element of the multiplicative group modulo m. This bijective mapping
destroys the linear structures of the linear feedback shift register sequence. But on the other
hand the new sequence qi inherits all the nice features of the linear feedback shift register
sequence ri, e. g. its period. Block splitting and leapfrog methods can be implemented as easily
as for multiple recursive generators, see section 2.4.2 and 2.5 for details.

The classes trng::yarnn and trng::yarnns implement the interface described in section 3.1.
Each class defines some parameter and status classes that will be used internally and by the
constructor. Furthermore for each generator several parameter sets are given, see Table 4.3.
Most of the parameter sets are taken from [31] and chosen to give generators with good
statistical properties.

An instance of a class trng::yarnn or trng::yarnns can be instantiated by various construc-
tors as specified for a random number engine. Additionally a non-default parameter set may
be chosen. The classes trng::yarnn and trng::yarnns provide all necessary seeding func-
tions (see Table 3.1) and additionally a function that sets the internal state (ri−1, ri−2, . . . , ri−n).
This function should never be called with all arguments set to zero. The classes trng::yarnn
and trng::yarnns model the concept of a parallel random number engine and therefore the
methods

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

are implemented. Furthermore the classes trng::yarnn or trng::yarnns provide a function
that returns a string with its name and an operator operator(). Random number engines are
comparable and can be written to or read from a stream.

The detailed interface of the classes trng::mrgn or trng::mrgns is given as follows:

namespace trng {

class yarn2 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;

35

4 TRNG classes

Ta
bl

e
4.

4:
K

ey
fe

at
ur

es
of

YA
R

N
ge

ne
ra

to
r

cl
as

se
s.

he
ad

er
fe

ed
ba

ck
pr

im
e

re
tu

rn
va

lu
e

cl
as

s
fil

e
ta

ps
n

fie
ld

F
m

pe
ri

od
of

na
me

()

tr
ng

::
ya

rn
2

tr
ng

/y
ar

n2
.h

pp
2

F
23

1 −
1

m
2
−

1
≈

262
≈

4.
61
·1

018
ya

rn
2

tr
ng

::
ya

rn
3

tr
ng

/y
ar

n3
.h

pp
3

F
23

1 −
1

m
3
−

1
≈

293
≈

9.
90
·1

027
ya

rn
3

tr
ng

::
ya

rn
3s

tr
ng

/y
ar

n3
s.

hp
p

3
F

23
1 −

21
06

9
m

3
−

1
≈

293
≈

9.
90
·1

027
ya

rn
3s

tr
ng

::
ya

rn
4

tr
ng

/y
ar

n4
.h

pp
4

F
23

1 −
1

m
4
−

1
≈

212
4
≈

2.
13
·1

037
ya

rn
4

tr
ng

::
ya

rn
5

tr
ng

/y
ar

n5
.h

pp
5

F
23

1 −
1

m
5
−

1
≈

215
5
≈

4.
57
·1

046
ya

rn
5

tr
ng

::
ya

rn
5s

tr
ng

/y
ar

n5
s.

hp
p

5
F

23
1 −

22
64

1
m

5
−

1
≈

215
5
≈

4.
57
·1

046
ya

rn
5s

Ta
bl

e
4.

5:
Pa

ra
m

et
er

se
ts

fo
r

YA
R

N
ge

ne
ra

to
rs

.

pa
ra

m
et

er
se

t
a 1

a 2
a 3

a 4
a 5

b

tr
ng

::
ya

rn
2:

:L
Ec

uy
er

1
1

49
8

80
9

82
9

1
16

0
99

0
99

6
12

3
56

7
89

3
tr

ng
::

ya
rn

2:
:L

Ec
uy

er
2

46
32

5
1

08
4

58
7

12
3

56
7

89
3

tr
ng

::
ya

rn
3:

:L
Ec

uy
er

1
2

02
1

42
2

05
7

1
82

6
99

2
35

1
1

97
7

75
3

45
7

12
3

56
7

89
3

tr
ng

::
ya

rn
3:

:L
Ec

uy
er

2
1

47
6

72
8

72
9

0
1

15
5

64
3

11
3

12
3

56
7

89
3

tr
ng

::
ya

rn
3:

:L
Ec

uy
er

3
65

33
8

0
64

63
6

12
3

56
7

89
3

tr
ng

::
ya

rn
3s

::
tr

ng
0

2
02

5
21

3
98

5
1

11
2

95
3

67
7

2
03

8
96

9
60

1
1

61
6

07
6

84
7

tr
ng

::
ya

rn
3s

::
tr

ng
1

1
28

7
76

7
37

0
1

04
5

93
1

77
9

58
15

0
10

6
1

61
6

07
6

84
7

tr
ng

::
ya

rn
4:

:L
Ec

uy
er

1
2

00
1

98
2

72
2

1
41

2
28

4
25

7
1

15
5

38
0

21
7

1
66

8
33

9
92

2
12

3
56

7
89

3
tr

ng
::

ya
rn

4:
:L

Ec
uy

er
2

64
88

6
0

0
64

32
2

12
3

56
7

89
3

tr
ng

::
ya

rn
5:

:L
Ec

uy
er

1
10

7
37

4
18

2
0

0
0

10
4

48
0

12
3

56
7

89
3

tr
ng

::
ya

rn
5s

::
tr

ng
0

1
05

3
22

3
37

3
1

53
0

81
8

11
8

1
61

2
12

2
48

2
13

3
49

7
98

9
57

3
24

5
31

1
88

9
74

4
25

1
tr

ng
::

ya
rn

5s
::

tr
ng

1
2

06
8

61
9

23
8

2
13

8
33

2
91

2
67

1
75

4
16

6
1

44
2

24
0

99
2

1
52

6
95

8
81

7
88

9
74

4
25

1

36

4 TRNG classes

static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit yarn2(parameter_type=LEcuyer1);
explicit yarn2(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit yarn2(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const yarn2 &, const yarn2 &);
bool operator!=(const yarn2 &, const yarn2 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &t, const yarn2 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn2 &);

}

namespace trng {

class yarn3 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

static const parameter_type LEcuyer3;

explicit yarn3(parameter_type=LEcuyer1);
explicit yarn3(unsigned long, parameter_type=LEcuyer1);
template<typename gen>

37

4 TRNG classes

explicit yarn3(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const yarn3 &, const yarn3 &);
bool operator!=(const yarn3 &, const yarn3 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn3 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn3 &);

}

namespace trng {

class yarn3s {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type trng0;
static const parameter_type trng1;

explicit yarn3s(parameter_type=trng0);
explicit yarn3s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit yarn3s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();

38

4 TRNG classes

long operator()(long);
};

bool operator==(const yarn3s &, const yarn3s &);
bool operator!=(const yarn3s &, const yarn3s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn3s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn3s &);

}

namespace trng {

class yarn4 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;
static const parameter_type LEcuyer2;

explicit yarn4(parameter_type=LEcuyer1);
explicit yarn4(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit yarn4(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const yarn4 &, const yarn4 &);
bool operator!=(const yarn4 &, const yarn4 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn4 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn4 &);

}

39

4 TRNG classes

namespace trng {

class yarn5 {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type LEcuyer1;

explicit yarn5(parameter_type=LEcuyer1);
explicit yarn5(unsigned long, parameter_type=LEcuyer1);
template<typename gen>
explicit yarn5(gen &, parameter_type P=LEcuyer1);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const yarn5 &, const yarn5 &);
bool operator!=(const yarn5 &, const yarn5 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn5 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn5 &);

}

namespace trng {

class yarn5s {
public:
typedef long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

static const parameter_type trng0;
static const parameter_type trng1;

40

4 TRNG classes

explicit yarn5s(parameter_type=trng0);
explicit yarn5s(unsigned long, parameter_type=trng0);
template<typename gen>
explicit yarn5s(gen &, parameter_type P=trng0);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);
void seed(result_type, result_type, result_type, result_type, result_type);

void split(unsigned int, unsigned int);
void jump2(unsigned int);
void jump(unsigned long long);

static const char * name();
long operator()(long);

};

bool operator==(const yarn5s &, const yarn5s &);
bool operator!=(const yarn5s &, const yarn5s &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const yarn5s &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, yarn5s &);

}

4.1.4 Lagged Fibonacci generators

The template classes trng::lagfib2xor, trng::lagfib4xor, trng::lagfib2plus, trng::
lagfib4plus model random number engines (no splitting facilities) and implement lagged
Fibonacci generators with two or four feedback taps and exclusive-or or additive operation.
The recursion relation of these types of generators read

ri = ri−A ⊕ ri−B

ri = ri−A ⊕ ri−B ⊕ ri−C ⊕ ri−D

ri = ri−A + ri−B mod 2l

ri = ri−A + ri−B + ri−C + ri−D mod 2l .

These template classes are parameterized by an unsigned integer type, e. g. unsigned int
or unsigned long long, and the position of the feedback taps with A < B < C < D. For
properly chosen feedback taps the period of an exclusive-or generator is 2B − 1 or 2D − 1
respectively, and the period of an plus generator is (2B − 1)2l−1 or (2D − 1)2l−1 respectively,
where l denotes the number of significant bits of the integer type given as a template argument.
Template classes are declared in the header files trng/lagfib2xor.hpp, trng/lagfib4xor.hpp,
trng/lagfib2plus.hpp, and trng/lagfib4plus.hpp. For convenience TRNG provides some
typedefs for some realizations of lagged Fibonacci generators with two or four feedback taps.

The detailed interfaces of the classes trng::lagfib2xor, trng::lagfib4xor, trng::
lagfib2plus, trng::lagfib4plus are given as follows:

41

4 TRNG classes

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B>
class lagfib2xor {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib2xor();
explicit lagfib2xor(unsigned long);
template<typename gen>
explicit lagfib2xor(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib2xor<unsigned long, 103, 250> r250_ul;
typedef lagfib2xor<unsigned long long, 103, 250> r250_ull;
typedef lagfib2xor<unsigned long, 168, 521> lagfib2xor_521_ul;
typedef lagfib2xor<unsigned long long, 168, 521> lagfib2xor_521_ull;
typedef lagfib2xor<unsigned long, 273, 607> lagfib2xor_607_ul;
typedef lagfib2xor<unsigned long long, 273, 607> lagfib2xor_607_ull;
typedef lagfib2xor<unsigned long, 418, 1279> lagfib2xor_1279_ul;
typedef lagfib2xor<unsigned long long, 418, 1279> lagfib2xor_1279_ull;
typedef lagfib2xor<unsigned long, 1029, 2281> lagfib2xor_2281_ul;
typedef lagfib2xor<unsigned long long, 1029, 2281> lagfib2xor_2281_ull;
typedef lagfib2xor<unsigned long, 576, 3217> lagfib2xor_3217_ul;
typedef lagfib2xor<unsigned long long, 576, 3217> lagfib2xor_3217_ull;
typedef lagfib2xor<unsigned long, 2098, 4423> lagfib2xor_4423_ul;
typedef lagfib2xor<unsigned long long, 2098, 4423> lagfib2xor_4423_ull;
typedef lagfib2xor<unsigned long, 4187, 9689> lagfib2xor_9689_ul;
typedef lagfib2xor<unsigned long long, 4187, 9689> lagfib2xor_9689_ull;
typedef lagfib2xor<unsigned long, 9842, 19937> lagfib2xor_19937_ul;
typedef lagfib2xor<unsigned long long, 9842, 19937> lagfib2xor_19937_ull;

typedef lagfib2xor<uint32_t, 103, 250> r250_32;
typedef lagfib2xor<uint64_t, 103, 250> r250_64;
typedef lagfib2xor<uint32_t, 168, 521> lagfib2xor_521_32;
typedef lagfib2xor<uint64_t, 168, 521> lagfib2xor_521_64;
typedef lagfib2xor<uint32_t, 273, 607> lagfib2xor_607_32;
typedef lagfib2xor<uint64_t, 273, 607> lagfib2xor_607_64;
typedef lagfib2xor<uint32_t, 418, 1279> lagfib2xor_1279_32;
typedef lagfib2xor<uint64_t, 418, 1279> lagfib2xor_1279_64;
typedef lagfib2xor<uint32_t, 1029, 2281> lagfib2xor_2281_32;
typedef lagfib2xor<uint64_t, 1029, 2281> lagfib2xor_2281_64;
typedef lagfib2xor<uint32_t, 576, 3217> lagfib2xor_3217_32;
typedef lagfib2xor<uint64_t, 576, 3217> lagfib2xor_3217_64;
typedef lagfib2xor<uint32_t, 2098, 4423> lagfib2xor_4423_32;
typedef lagfib2xor<uint64_t, 2098, 4423> lagfib2xor_4423_64;

42

4 TRNG classes

typedef lagfib2xor<uint32_t, 4187, 9689> lagfib2xor_9689_32;
typedef lagfib2xor<uint64_t, 4187, 9689> lagfib2xor_9689_64;
typedef lagfib2xor<uint32_t, 9842, 19937> lagfib2xor_19937_32;
typedef lagfib2xor<uint64_t, 9842, 19937> lagfib2xor_19937_64;

}

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B, unsigned int C, unsigned int D>
class lagfib4xor {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib4xor();
explicit lagfib4xor(unsigned long);
template<typename gen>
explicit lagfib4xor(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib4xor<unsigned long, 471, 1586, 6988, 9689> Ziff_ul;
typedef lagfib4xor<unsigned long long, 471, 1586, 6988, 9689> Ziff_ull;
typedef lagfib4xor<unsigned long, 168, 205, 242, 521> lagfib4xor_521_ul;
typedef lagfib4xor<unsigned long long, 168, 205, 242, 521> lagfib4xor_521_ull;
typedef lagfib4xor<unsigned long, 147, 239, 515, 607> lagfib4xor_607_ul;
typedef lagfib4xor<unsigned long long, 147, 239, 515, 607> lagfib4xor_607_ull;
typedef lagfib4xor<unsigned long, 418, 705, 992, 1279> lagfib4xor_1279_ul;
typedef lagfib4xor<unsigned long long, 418, 705, 992, 1279> lagfib4xor_1279_ull;
typedef lagfib4xor<unsigned long, 305, 610, 915, 2281> lagfib4xor_2281_ul;
typedef lagfib4xor<unsigned long long, 305, 610, 915, 2281> lagfib4xor_2281_ull;
typedef lagfib4xor<unsigned long, 576, 871, 1461, 3217> lagfib4xor_3217_ul;
typedef lagfib4xor<unsigned long long, 576, 871, 1461, 3217> lagfib4xor_3217_ull;
typedef lagfib4xor<unsigned long, 1419, 1736, 2053, 4423> lagfib4xor_4423_ul;
typedef lagfib4xor<unsigned long long, 1419, 1736, 2053, 4423> lagfib4xor_4423_ull;
typedef lagfib4xor<unsigned long, 471, 2032, 4064, 9689> lagfib4xor_9689_ul;
typedef lagfib4xor<unsigned long long, 471, 2032, 4064, 9689> lagfib4xor_9689_ull;
typedef lagfib4xor<unsigned long, 3860, 7083, 11580, 19937> lagfib4xor_19937_ul;
typedef lagfib4xor<unsigned long long, 3860, 7083, 11580, 19937> lagfib4xor_19937_ull;

typedef lagfib4xor<uint32_t, 471, 1586, 6988, 9689> Ziff_32;
typedef lagfib4xor<uint64_t, 471, 1586, 6988, 9689> Ziff_64;
typedef lagfib4xor<uint32_t, 168, 205, 242, 521> lagfib4xor_521_32;
typedef lagfib4xor<uint64_t, 168, 205, 242, 521> lagfib4xor_521_64;
typedef lagfib4xor<uint32_t, 147, 239, 515, 607> lagfib4xor_607_32;
typedef lagfib4xor<uint64_t, 147, 239, 515, 607> lagfib4xor_607_64;
typedef lagfib4xor<uint32_t, 418, 705, 992, 1279> lagfib4xor_1279_32;

43

4 TRNG classes

typedef lagfib4xor<uint64_t, 418, 705, 992, 1279> lagfib4xor_1279_64;
typedef lagfib4xor<uint32_t, 305, 610, 915, 2281> lagfib4xor_2281_32;
typedef lagfib4xor<uint64_t, 305, 610, 915, 2281> lagfib4xor_2281_64;
typedef lagfib4xor<uint32_t, 576, 871, 1461, 3217> lagfib4xor_3217_32;
typedef lagfib4xor<uint64_t, 576, 871, 1461, 3217> lagfib4xor_3217_64;
typedef lagfib4xor<uint32_t, 1419, 1736, 2053, 4423> lagfib4xor_4423_32;
typedef lagfib4xor<uint64_t, 1419, 1736, 2053, 4423> lagfib4xor_4423_64;
typedef lagfib4xor<uint32_t, 471, 2032, 4064, 9689> lagfib4xor_9689_32;
typedef lagfib4xor<uint64_t, 471, 2032, 4064, 9689> lagfib4xor_9689_64;
typedef lagfib4xor<uint32_t, 3860, 7083, 11580, 19937> lagfib4xor_19937_32;
typedef lagfib4xor<uint64_t, 3860, 7083, 11580, 19937> lagfib4xor_19937_64;

}

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B>
class lagfib2plus {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib2plus();
explicit lagfib2plus(unsigned long);
template<typename gen>
explicit lagfib2plus(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib2plus<unsigned long, 168, 521> lagfib2plus_521_ul;
typedef lagfib2plus<unsigned long long, 168, 521> lagfib2plus_521_ull;
typedef lagfib2plus<unsigned long, 273, 607> lagfib2plus_607_ul;
typedef lagfib2plus<unsigned long long, 273, 607> lagfib2plus_607_ull;
typedef lagfib2plus<unsigned long, 418, 1279> lagfib2plus_1279_ul;
typedef lagfib2plus<unsigned long long, 418, 1279> lagfib2plus_1279_ull;
typedef lagfib2plus<unsigned long, 1029, 2281> lagfib2plus_2281_ul;
typedef lagfib2plus<unsigned long long, 1029, 2281> lagfib2plus_2281_ull;
typedef lagfib2plus<unsigned long, 576, 3217> lagfib2plus_3217_ul;
typedef lagfib2plus<unsigned long long, 576, 3217> lagfib2plus_3217_ull;
typedef lagfib2plus<unsigned long, 2098, 4423> lagfib2plus_4423_ul;
typedef lagfib2plus<unsigned long long, 2098, 4423> lagfib2plus_4423_ull;
typedef lagfib2plus<unsigned long, 4187, 9689> lagfib2plus_9689_ul;
typedef lagfib2plus<unsigned long long, 4187, 9689> lagfib2plus_9689_ull;
typedef lagfib2plus<unsigned long, 9842, 19937> lagfib2plus_19937_ul;
typedef lagfib2plus<unsigned long long, 9842, 19937> lagfib2plus_19937_ull;

typedef lagfib2plus<unsigned long, 168, 521> lagfib2plus_521_ul;
typedef lagfib2plus<unsigned long long, 168, 521> lagfib2plus_521_ull;

44

4 TRNG classes

typedef lagfib2plus<unsigned long, 273, 607> lagfib2plus_607_ul;
typedef lagfib2plus<unsigned long long, 273, 607> lagfib2plus_607_ull;
typedef lagfib2plus<unsigned long, 418, 1279> lagfib2plus_1279_ul;
typedef lagfib2plus<unsigned long long, 418, 1279> lagfib2plus_1279_ull;
typedef lagfib2plus<unsigned long, 1029, 2281> lagfib2plus_2281_ul;
typedef lagfib2plus<unsigned long long, 1029, 2281> lagfib2plus_2281_ull;
typedef lagfib2plus<unsigned long, 576, 3217> lagfib2plus_3217_ul;
typedef lagfib2plus<unsigned long long, 576, 3217> lagfib2plus_3217_ull;
typedef lagfib2plus<unsigned long, 2098, 4423> lagfib2plus_4423_ul;
typedef lagfib2plus<unsigned long long, 2098, 4423> lagfib2plus_4423_ull;
typedef lagfib2plus<unsigned long, 4187, 9689> lagfib2plus_9689_ul;
typedef lagfib2plus<unsigned long long, 4187, 9689> lagfib2plus_9689_ull;
typedef lagfib2plus<unsigned long, 9842, 19937> lagfib2plus_19937_ul;
typedef lagfib2plus<unsigned long long, 9842, 19937> lagfib2plus_19937_ull;

}

namespace trng {

template<typename integer_type,
unsigned int A, unsigned int B, unsigned int C, unsigned int D>
class lagfib4plus {
public:
typedef integer_type result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class status_type;

lagfib4plus();
explicit lagfib2plus(unsigned long);
template<typename gen>
explicit lagfib4plus(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &);

};

typedef lagfib4plus<unsigned long, 168, 205, 242, 521> lagfib4plus_521_ul;
typedef lagfib4plus<unsigned long long, 168, 205, 242, 521> lagfib4plus_521_ull;
typedef lagfib4plus<unsigned long, 147, 239, 515, 607> lagfib4plus_607_ul;
typedef lagfib4plus<unsigned long long, 147, 239, 515, 607> lagfib4plus_607_ull;
typedef lagfib4plus<unsigned long, 418, 705, 992, 1279> lagfib4plus_1279_ul;
typedef lagfib4plus<unsigned long long, 418, 705, 992, 1279> lagfib4plus_1279_ull;
typedef lagfib4plus<unsigned long, 305, 610, 915, 2281> lagfib4plus_2281_ul;
typedef lagfib4plus<unsigned long long, 305, 610, 915, 2281> lagfib4plus_2281_ull;
typedef lagfib4plus<unsigned long, 576, 871, 1461, 3217> lagfib4plus_3217_ul;
typedef lagfib4plus<unsigned long long, 576, 871, 1461, 3217> lagfib4plus_3217_ull;
typedef lagfib4plus<unsigned long, 1419, 1736, 2053, 4423> lagfib4plus_4423_ul;
typedef lagfib4plus<unsigned long long, 1419, 1736, 2053, 4423> lagfib4plus_4423_ull;
typedef lagfib4plus<unsigned long, 471, 2032, 4064, 9689> lagfib4plus_9689_ul;
typedef lagfib4plus<unsigned long long, 471, 2032, 4064, 9689> lagfib4plus_9689_ull;
typedef lagfib4plus<unsigned long, 3860, 7083, 11580, 19937> lagfib4plus_19937_ul;
typedef lagfib4plus<unsigned long long, 3860, 7083, 11580, 19937> lagfib4plus_19937_ull;

}

45

4 TRNG classes

4.1.5 Mersenne twister generators

The Mersenne twister is a popular random number generator that has been introduced by
Makoto Matsumoto and Takuji Nishimura [43]. In TRNG the Mersenne twister comes in two
different flavors. The classical Mersenne twister implemented as trng::mt19937 generates
random integers of 32 bits, but there is also a version that generates integers of 64 bits as
implemented by trng::mt19937_64. These classes are declared in the header files trng/
mt19937.hpp and trng/mt19937_64.hpp. The detailed interfaces of the classes trng::mt19937
and trng::mt19937_64 are given as follows:

namespace trng {

class mt19937 {
public:
typedef unsigned long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;
class status_type;

mt19937();
explicit mt19937(unsigned long);
template<typename gen>
explicit mt19937(gen &);

void seed();
template<typename gen>
void seed(gen &g);
void seed(result_type);

static const char * name();
long operator()(long);

};

bool operator==(const mt19937 &, const mt19937 &);
bool operator!=(const mt19937 &, const mt19937 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mt19937 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mt19937 &);

}

namespace trng {

class mt19937_64 {
public:
typedef unsigned long result_type;
result_type operator()();
static const result_type min;
static const result_type max;

class parameter_type;

46

4 TRNG classes

class status_type;

mt19937_64();
explicit mt19937_64(unsigned long);
template<typename gen>
explicit mt19937_64(gen &);

void seed();
void seed(unsigned long);
template<typename gen>
void seed(gen &g);
void seed(result_type);

static const char * name();
long operator()(long);

};

bool operator==(const mt19937_64 &, const mt19937_64 &);
bool operator!=(const mt19937_64 &, const mt19937_64 &);
template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const mt19937_64 &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, mt19937_64 &);

}

4.2 Random number distributions

This section gives a detailed description of all random number distributions, that have been
implemented by TRNG. Each subsection presents the public interface of one random num-
ber distribution. The part of the public interface, that is mandatory for a random number
distribution, will not be discussed in detail, read section 3.2 instead.

Classes for continuous random number distributions are implemented as template classes.
The template argument determines the result_type and might be either float, double, or
long double, where double is the default.

Additionally to the requirements in section 3.2 each random number distribution class
provides member functions that calculate its probability distribution function, its cumula-
tive distribution function and in the case of continuous distributions its inverse cumulative
distribution function as well. These member functions have the signatures

result_type pdf(result_type x) const;
result_type cdf(result_type x) const;
result_type icdf(result_type x) const;

and for discrete random variables

result_type pdf(int x) const;
result_type cdf(int x) const;

The concept of a random number distribution requires two functions that take a random
number engine as its argument and generate a random variable with some specific distribution
by calling operator() of the given random number engine. Note, the concept of a random

47

4 TRNG classes

number distribution does not specify how often operator() is called. This allows the im-
plementer of a random number distribution to choose between various algorithms [27] that
transform uniform random numbers into non-uniform distributed numbers. Some of these
algorithms transform exactly one uniform random number into one non-uniform number,
while some other algorithms have to call operator() more than once. How often operator()
is called may even vary at runtime. If not otherwise stated, all random number distributions
in TRNG are implemented in such a way that operator() is called exactly once. Because of
this special feature it is much more easy to write parallel Monte Carlo simulations that give
the same result (and statistical error) independent of the number of parallel processes. We say
such algorithms play fair, see section 2.3 and 6.

4.2.1 Uniform distributions

parameters a, b ∈ R with a < b
support [a, b)
mean (a + b)/2
variance (b− a)2/12

TRNG provides three different classes for generating uni-
formly distributed random numbers with distribution
function

p(x|a, b) =

{
1/(b− a) if a ≤ x < b
0 otherwise .

The class uniform_dist generates random numbers in the range [a, b). Valid parameters for
this distribution are a, b ∈ R with a < b.

Many Monte Carlo simulations consume random numbers uniformly distributed in [0, 1)
that can be generated using class uniform_dist with parameters a = 0 and b = 1. However, the
uniform distribution in [0, 1) is so common that TRNG has a specialized class uniform01_dist
for this case. The class uniform01_dist might be faster than uniform_dist with parameters
a = 0 and b = 1.

Class uniform_int_dist is a variant of uniform_dist for integer valued random variables.
It provides random numbers with distribution function

p(x|a, b) =

{
1/(b− a) if a ≤ x < b
0 otherwise

for x ∈ Z.

Valid parameters for this distribution are a, b ∈ Z with a < b.
The class uniform_dist is declared in the header file trng/uniform_dist.hpp and its public

interface is given as follows:

namespace trng {

template<typename float_t=double>
class uniform_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type a() const;
void a(result_type);
result_type b() const;
void b(result_type);
param_type(result_type a, result_type b);

};

48

4 TRNG classes

uniform_dist(result_type a, result_type b);
explicit uniform_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &)
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type a() const;
void a(result_type);
result_type b();
void b(result_type);
result_type pdf(result_type x) const;
result_type cdf(result_type x) const;
result_type icdf(result_type x) const;

};

template<typename float_t>
bool operator==(const typename uniform_dist<float_t>::param_type &,
const typename uniform_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename uniform_dist<float_t>::param_type &,
const typename uniform_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename uniform_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename uniform_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const uniform_dist<float_t> &, const uniform_dist<float_t> &);
template<typename float_t>
bool operator!=(const uniform_dist<float_t> &, const uniform_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_dist<float_t> &);

}

The class uniform01_dist is declared in the header file trng/uniform01_dist.hpp and its
public interface is given as follows:

namespace trng {

template<typename float_t=double>
class uniform01_dist {
public:
typedef float_t result_type;

49

4 TRNG classes

class param_type;
uniform01_dist();
explicit uniform01_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type pdf(result_type x) const;
result_type cdf(result_type x) const;
result_type icdf(result_type x) const;

};

template<typename float_t>
bool operator==(const typename uniform01_dist<float_t>::param_type &,
const typename uniform01_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename uniform01_dist<float_t>::param_type &,
const typename uniform01_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename uniform01_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename uniform01_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const uniform01_dist<float_t> &, const uniform01_dist<float_t> &);
template<typename float_t>
bool operator!=(const uniform01_dist<float_t> &, const uniform01_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform01_dist<float_t> &)
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform01_dist<float_t> &);

}

The class uniform_int_dist is declared in the header file trng/uniform_int_dist.hpp and
its public interface is given as follows:

namespace trng {

class uniform_int_dist {
public:
typedef int result_type;
class param_type {
public:
result_type a() const;
void a(result_type);

50

4 TRNG classes

result_type b() const;
void b(result_type);
param_type(result_type a, result_type b);

};
uniform_int_dist(result_type a, result_type b);
explicit uniform_int_dist(const param_type &)
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type a() const;
void a(result_type);
result_type b() const;
void b(result_type);
double pdf(result_type x) const;
double cdf(result_type x) const;

};

bool operator==(const uniform_int_dist::param_type &, const uniform_int_dist::param_type &);
bool operator!=(const uniform_int_dist::param_type &, const uniform_int_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_int_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_int_dist::param_type &);

bool operator==(const uniform_int_dist &, const uniform_int_dist &);
bool operator!=(const uniform_int_dist &, const uniform_int_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const uniform_int_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, uniform_int_dist &);

}

4.2.2 Exponential distribution

parameter µ ∈ R with µ > 0
support [0, ∞)
mean µ
variance µ2

Class exponential_dist provides random numbers
with exponential distribution with mean µ. The proba-
bility distribution function reads

p(x|µ) =
{

1
µ e−x/µ if x ≥ 0

0 otherwise .

Valid parameter for this distribution is µ ∈ R with µ > 0.

51

4 TRNG classes

The class exponential_dist is declared in the header file trng/exponential_dist.hpp and
its public interface is given as follows:

namespace trng {

template<typename float_t=double>
class exponential_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type mu() const;
void mu(result_type);
explicit param_type(result_type mu);

};
explicit exponential_dist(result_type mu);
explicit exponential_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type mu() const;
void mu(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename exponential_dist<float_t>::param_type &,
const typename exponential_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename exponential_dist<float_t>::param_type &,
const typename exponential_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename exponential_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename exponential_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const exponential_dist<float_t> &, const exponential_dist<float_t> &);
template<typename float_t>
bool operator!=(const exponential_dist<float_t> &, const exponential_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const exponential_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>

52

4 TRNG classes

std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, exponential_dist<float_t> &);

}

4.2.3 Two-sided exponential distribution

parameter µ ∈ R with µ > 0
support (−∞, ∞)
mean 0
variance 2µ2

Class twosided_exponential_dist provides random
numbers with two-sided exponential distribution with
parameter µ. The probability distribution function reads

p(x|µ) = 1
2µ

e−|x|/µ

Valid parameter for this distribution is µ ∈ R with µ > 0.
The class twosided_exponential_dist is declared in the header file trng/twosided_

exponential_dist.hpp and its public interface is given as follows:

namespace trng {

template<typename float_t=double>
class twosided_exponential_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type mu() const;
void mu(result_type);
explicit param_type(result_type mu);

};
explicit twosided_exponential_dist(result_type mu);
explicit twosided_exponential_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type mu() const;
void mu(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename exponential_dist<float_t>::param_type &,
const typename exponential_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename exponential_dist<float_t>::param_type &,
const typename exponential_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>

53

4 TRNG classes

std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename exponential_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename exponential_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const exponential_dist<float_t> &, const exponential_dist<float_t> &);
template<typename float_t>
bool operator!=(const exponential_dist<float_t> &, const exponential_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const exponential_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, exponential_dist<float_t> &);

}

4.2.4 Normal distributions

parameters µ, σ ∈ R, with σ > 0
support (−∞, ∞)
mean µ
variance σ2

There are two classes for producing random numbers
with normal distribution, normal_dist and correlated_
normal_dist . Class normal_dist provides uncorrelated
random numbers with normal distribution with mean µ
and standard deviation σ. The probability distribution
function reads

p(x|µ, σ) =
1√

2πσ2
e−(x−µ)2/(2σ2) .

Valid parameters for this distribution are µ, σ ∈ R with σ > 0. The normal distribution is also
known as Gaussian distribution.

The class normal_dist is declared in the header file trng/normal_dist.hpp and its public
interface is given as follows:

namespace trng {

template<typename float_t=double>
class normal_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type mu() const;
void mu(result_type);
result_type sigma() const;
void sigma(result_type);
param_type(result_type mu, result_type sigma);

};
normal_dist(result_type mu, result_type sigma);
explicit normal_dist(const param_type &);
void reset();
template<typename R>

54

4 TRNG classes

result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type mu() const;
void mu(result_type);
result_type sigma() const;
void sigma(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename normal_dist<float_t>::param_type &,
const typename normal_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename normal_dist<float_t>::param_type &,
const typename normal_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename normal_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename normal_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const normal_dist<float_t> &, const normal_dist<float_t> &);
template<typename float_t>
bool operator!=(const normal_dist<float_t> &, const normal_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const normal_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, normal_dist<float_t> &);

}

If x = (x1, x2, . . . xd) are d random variables, then the multivariate normal density function
for x is

p(x|V) =
1√

(2π)d det V
exp

(
−1

2
xTV−1x

)
. (4.1)

Each variable x1, x2, . . . xd has mean zero and the the covariance matrix of x1, x2, . . . xd is given
by the symmetric positive definite d× d matrix V. Class correlated_normal_dist provides
correlated random numbers with normal distribution by the transformation of uncorrelated
random numbers [12].

The class correlated_normal_dist is declared in the header file trng/correlated_normal_
dist.hpp and its public interface is given as follows:

55

4 TRNG classes

namespace trng {

template<typename float_t=double>
class correlated_normal_dist {
public:
typedef float_t result_type;
class param_type {
public:
template<typename iter>
param_type(iter first, iter last);

};
template<typename iter>
correlated_normal_dist(iter first, iter last);
explicit correlated_normal_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &p_new);

};

template<typename float_t>
bool operator==(const typename correlated_normal_dist<float_t>::param_type &,
const typename correlated_normal_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename correlated_normal_dist<float_t>::param_type &,
const typename correlated_normal_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, template float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename correlated_normal_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, template float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename correlated_normal_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const correlated_normal_dist<float_t> &,
const correlated_normal_dist<float_t> &);
template<typename float_t>
bool operator!=(const correlated_normal_dist<float_t> &,
const correlated_normal_dist<float_t> &);

template<typename char_t, typename traits_t, template float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const correlated_normal_dist<float_t> &);
template<typename char_t, typename traits_t, template float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
correlated_normal_dist<float_t> &);

}

56

4 TRNG classes

The covariance matrix V has to be passed to the constructor of correlated_normal_dist by
two iterators. It is not checked, if the matrix is positive definite. The call operator operator()
returns a single random number and has complexity O (d). As a consequence, the generation
of a tuple of d correlated random numbers takes O

(
d2) operations.

Successive calls return random numbers with variance V1,1, V2,2 and so on, until the
operator() has been called d times, which returns a random number with variance Vd,d.
A sequence of further calls of operator() will return random numbers with the same se-
quences of variances. The method reset resets the internal state of the distribution such
that, of further calls of operator() will return random numbers starting with a number with
variance V1,1. Listing 4.1 illustrates the usage of class correlated_normal_dist.

Listing 4.1: Demonstration program illustrating the usage of correlated_normal_dist.
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <vector>
#include <trng/lcg64.hpp>
#include <trng/correlated_normal_dist.hpp>

double covariance(const std::vector<double> &v1, const std::vector<double> &v2) {
std::vector<double>::size_type n = v1.size();
double m1 = 0.0, m2 = 0.0, c = 0.0;
for (std::vector<double>::size_type i = 0; i < n; ++i) {
m1 += v1[i] / n;
m2 += v2[i] / n;

}
for (std::vector<double>::size_type i = 0; i < n; ++i)
c += (v1[i] - m1) * (v2[i] - m2) / n;

return c;
}

int main() {
const int d = 4;
// covariance matrix
double sig[d][d] = {{2.0, -0.5, 0.3, -0.3},

{-0.5, 3.0, -0.3, 0.3},
{0.3, -0.3, 1.0, -0.3},
{-0.3, 0.3, -0.3, 1.0}};

trng::correlated_normal_dist<> D(&sig[0][0], &sig[d - 1][d - 1] + 1);
trng::lcg64 R;

std::vector<double> x1, x2, x3, x4;
// generate 4−tuples of correlated normal variables
for (int i = 0; i < 1000000; ++i) {
x1.push_back(D(R));
x2.push_back(D(R));
x3.push_back(D(R));
x4.push_back(D(R));

}
// print (empirical) covariance matrix
std::cout << std::setprecision(4) << covariance(x1, x1) << ’\t ’ << covariance(x1, x2) << ’\t ’

<< covariance(x1, x3) << ’\t ’ << covariance(x1, x4) << ’\n ’
<< covariance(x2, x1) << ’\t ’ << covariance(x2, x2) << ’\t ’ << covariance(x2, x3)
<< ’\t ’ << covariance(x2, x4) << ’\n ’
<< covariance(x3, x1) << ’\t ’ << covariance(x3, x2) << ’\t ’ << covariance(x3, x3)

57

4 TRNG classes

<< ’\t ’ << covariance(x3, x4) << ’\n ’
<< covariance(x4, x1) << ’\t ’ << covariance(x4, x2) << ’\t ’ << covariance(x4, x3)
<< ’\t ’ << covariance(x4, x4) << ’\n ’;

return EXIT_SUCCESS;
}

4.2.5 Truncated normal distribution

parameters µ, σ, a, b ∈ R, with σ > 0, a < b
support [a, b]

mean µ +
φ(a−µ

σ)−φ(b−µ
σ)

Φ(b−µ
σ)−Φ(a−µ

σ)
σ

variance σ2

[
1 +

a−µ
σ φ(a−µ

σ)− b−µ
σ φ(b−µ

σ)

Φ(b−µ
σ)−Φ(a−µ

σ)
−
(

φ(a−µ
σ)−φ(b−µ

σ)

Φ(b−µ
σ)−Φ(a−µ

σ)

)2
]

The class truncated_
normal_dist provides
random numbers with a
truncated normal distribu-
tion with parameters µ, σ,
a and b. The probability
distribution function reads

p(x|µ, σ, a, b) =

1
σ

φ

(
x− µ

σ

)
Φ
(

b− µ

σ

)
−Φ

(
a− µ

σ

)
where φ(x) denotes the probability density function of the standard normal distribution
and Φ(x) its cumulative distribution function. Valid parameters for this distribution are
µ, σ, a, b,∈ R with σ > 0 and a < b.

The class truncated_normal_dist is declared in the header file trng/truncated_normal_
dist.hpp and its public interface is given as follows:

namespace trng {

template<typename float_t=double>
class truncated_normal_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type mu() const;
void mu(result_type);
result_type sigma() const;
void sigma(result_type);
result_type a() const;
void a(result_type);
result_type b() const;
void b(result_type);
param_type(result_type mu, result_type sigma, result_type a, result_type b);

};
truncated_normal_dist(result_type mu, result_type sigma,
result_type a, result_type b);
explicit truncated_normal_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);

58

4 TRNG classes

result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type mu() const;
void mu(result_type);
result_type sigma() const;
void sigma(result_type);
result_type a() const;
void a(result_type);
result_type b() const;
void b(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename truncated_normal_dist<float_t>::param_type &,
const typename truncated_normal_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename truncated_normal_dist<float_t>::param_type &,
const typename truncated_normal_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename truncated_normal_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename truncated_normal_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const truncated_normal_dist<float_t> &, const truncated_normal_dist<float_t> &);
template<typename float_t>
bool operator!=(const truncated_normal_dist<float_t> &, const truncated_normal_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const truncated_normal_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, truncated_normal_dist<float_t> &);

}

4.2.6 Maxwell distribution

parameters θ ∈ R, with θ > 0
support (0, ∞)
mean 2θ

√
2/π

variance θ2(3π − 8)/π

The class maxwell_dist provides random numbers with
Maxwell distribution with the parameter θ. The proba-
bility distribution function reads

p(x|θ) =
√

2
π

x2e−x2/(2θ2)

θ3 .

59

4 TRNG classes

Valid parameters for this distribution are θ ∈ R with θ > 0. The Maxwell distribution is also
know as Maxwell-Boltzmann distribution.

The class maxwell_dist is declared in the header file trng/maxwell_dist.hpp and its public
interface is given as follows:

namespace trng {

template<typename float_t=double>
class maxwell_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type theta() const;
void theta(result_type);
param_type(result_type theta);

};
maxwell_dist(result_type theta);
explicit maxwell_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type theta() const;
void theta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename maxwell_dist<float_t>::param_type &,
const typename maxwell_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename maxwell_dist<float_t>::param_type &,
const typename maxwell_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename maxwell_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename maxwell_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const maxwell_dist<float_t> &, const maxwell_dist<float_t> &);
template<typename float_t>
bool operator!=(const maxwell_dist<float_t> &, const maxwell_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>

60

4 TRNG classes

std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const maxwell_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, maxwell_dist<float_t> &);

}

4.2.7 Cauchy distribution

parameters θ, η ∈ R, with θ > 0
support (−∞, ∞)
mean not defined
variance not defined

The class cauchy_dist provides random numbers with
Cauchy distribution with parameters θ and η. The prob-
ability distribution function reads

p(x|θ, η) =
1

θπ

(
1 +

(
x−η

θ

)2
) .

Valid parameters for this distribution are θ, η ∈ R with θ > 0. The Cauchy distribution is also
know as Lorentz distribution or Breit-Wigner distribution.

The class cauchy_dist is declared in the header file trng/cauchy_dist.hpp and its public
interface is given as follows:

namespace trng {

template<typename float_t=double>
class cauchy_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type theta() const;
void theta(result_type);
result_type eta() const;
void eta(result_type);
param_type(result_type theta, result_type eta);

};
cauchy_dist(result_type theta, result_type eta);
explicit cauchy_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type theta() const;
void theta(result_type);
result_type eta() const;
void eta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

61

4 TRNG classes

template<typename float_t>
bool operator==(const typename cauchy_dist<float_t>::param_type &,
const typename cauchy_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename cauchy_dist<float_t>::param_type &,
const typename cauchy_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename cauchy_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename cauchy_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const cauchy_dist<float_t> &, const cauchy_dist<float_t> &);
template<typename float_t>
bool operator!=(const cauchy_dist<float_t> &, const cauchy_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const cauchy_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, cauchy_dist<float_t> &);

}

4.2.8 Logistic distribution

parameters θ, η ∈ R, with θ > 0
support (−∞, ∞)
mean η
variance π2θ2/3

Class logistic_dist provides random numbers with
Logistic distribution with parameters θ and η. The prob-
ability distribution function reads

p(x|θ, η) =
e−(x−η)/θ

θ
(
1 + e−(x−η)/θ

)2 .

Valid parameters for this distribution are θ, η ∈ R with θ > 0.
The class logistic_dist is declared in the header file trng/logistic_dist.hpp and its

public interface is given as follows:

namespace trng {

template<typename float_t=double>
class logistic_dist {
public:
typedef double result_type;
class param_type {
public:
result_type theta() const;
void theta(result_type);
result_type eta() const;
void eta(result_type);

62

4 TRNG classes

param_type(result_type theta, result_type eta);
};
logistic_dist(result_type theta, result_type eta);
explicit logistic_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type theta() const;
void theta(result_type);
result_type eta() const;
void eta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename logistic_dist<float_t>::param_type &,
const typename logistic_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename logistic_dist<float_t>::param_type &,
const typename logistic_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename logistic_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename logistic_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const logistic_dist<float_t> &, const logistic_dist<float_t> &);
template<typename float_t>
bool operator!=(const logistic_dist<float_t> &, const logistic_dist<float_t> &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t, typename float_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const logistic_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, logistic_dist<float_t> &);

}

4.2.9 Lognormal distribution

parameters µ, σ ∈ R, with σ > 0
support (0, ∞)

mean eµ+σ2/2

variance (eσ2 − 1)eµ/2+σ2

Class lognormal_dist provides random numbers with
lognormal distribution with parameters µ and σ. The

63

4 TRNG classes

probability distribution function reads

p(x|µ, σ) =

0 for x ≤ 0

1

x
√

2πσ2
e−(ln x−µ)2/(2σ2) for x > 0 .

Valid parameters for this distribution are µ, σ ∈ R with σ > 0.
The class lognormal_dist is declared in the header file trng/lognormal_dist.hpp and its

public interface is given as follows:

namespace trng {

template<typename float_t=double>
class lognormal_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type mu() const;
void mu(result_type);
result_type sigma() const;
void sigma(result_type);
param_type(result_type mu, result_type sigma);

};
lognormal_dist(result_type mu, result_type sigma);
explicit lognormal_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type mu() const;
void mu(result_type);
result_type sigma() const;
void sigma(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename lognormal_dist<float_t>::param_type &,
const typename lognormal_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename lognormal_dist<float_t>::param_type &,
const typename lognormal_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename lognormal_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>

64

4 TRNG classes

std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename lognormal_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const lognormal_dist<float_t> &, const lognormal_dist<float_t> &);
template<typename float_t>
bool operator!=(const lognormal_dist<float_t> &, const lognormal_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const lognormal_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, lognormal_dist<float_t> &);

}

4.2.10 Pareto distribution

parameters θ, γ ∈ (0, ∞)
support [0, ∞)
mean θ/(γ− 1)

variance
θ2γ

(γ− 1)2(γ− 2)

The mean and the variance are de-
fined only if γ > 1 and γ > 2, re-
spectively.

Class pareto_dist provides random numbers with
Pareto distribution with parameters γ and θ. The prob-
ability distribution function reads

p(x|γ, θ) =

0 for x < 0

γ

θ

(
1 +

x
θ

)−γ−1
for x ≥ 0 .

Valid parameters for this distribution are γ, θ ∈ R with
γ > 0 and θ > 0. In the mathematics literature, one
can find two different kinds of probability distributions that are referred to as the Pareto
distribution. Section 4.2.11 introduces another probability distribution that is also sometimes
called the Pareto distribution.

The class pareto_dist is declared in the header file trng/pareto_dist.hpp and its public
interface is given as follows:

namespace trng {

template<typename float_t=double>
class pareto_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type gamma() const;
void gamma(result_type);
result_type theta() const;
void theta(result_type);
param_type(result_type gamma, result_type theta);

};
pareto_dist(result_type gamma, result_type theta);
explicit pareto_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);

65

4 TRNG classes

template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type gamma() const;
void gamma(result_type);
result_type theta() const;
void theta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename pareto_dist<float_t>::param_type &,
const typename pareto_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename pareto_dist<float_t>::param_type &,
const typename pareto_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename pareto_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename pareto_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const pareto_dist<float_t> &, const pareto_dist<float_t> &);
template<typename float_t>
bool operator!=(const pareto_dist<float_t> &, const pareto_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const pareto_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, pareto_dist<float_t> &);

}

4.2.11 Power-law distribution

parameters θ, γ ∈ (0, ∞)
support [θ, ∞)
mean γθ/(γ− 1)

variance
θ2γ

(γ− 1)2(γ− 2)

The mean and the variance are de-
fined only if γ > 1 and γ > 2, re-
spectively.

Class powerlaw_dist provides random numbers with
power-law distribution with parameters γ and θ. This
distribution is related to the Pareto distribution and its
probability distribution function reads

p(x|γ, θ) =

0 for x < θ

γ

θ

(x
θ

)−γ−1
for x ≥ θ .

66

4 TRNG classes

Valid parameters for this distribution are γ, θ ∈ R with
γ > 0 and θ > 0.

The class powerlaw_dist is declared in the header file trng/powerlaw_dist.hpp and its
public interface is given as follows:

namespace trng {

template<typename float_t=double>
class powerlaw_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type gamma() const;
void gamma(result_type);
result_type theta() const;
void theta(result_type);
param_type(result_type gamma, result_type theta);

};
powerlaw_dist(result_type gamma, result_type theta);
explicit powerlaw_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type gamma() const;
void gamma(result_type);
result_type theta() const;
void theta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename powerlaw_dist::param_type &,
const typename powerlaw_dist::param_type &);
template<typename float_t>
bool operator!=(const typename powerlaw_dist::param_type &,
const typename powerlaw_dist::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename powerlaw_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename powerlaw_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const powerlaw_dist<float_t> &, const powerlaw_dist<float_t> &);

67

4 TRNG classes

template<typename float_t>
bool operator!=(const powerlaw_dist<float_t> &, const powerlaw_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const powerlaw_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, powerlaw_dist<float_t> &);

}

4.2.12 Tent distribution

parameters m, d ∈ R, d > 0
support (m− d, m + d)
mean m
variance d2/6

Class tent_dist provides random numbers with tent
distribution with parameters m and d. This distribution
is symmetric around m and its support is the interval
(m − d, m + d). The probability distribution function
reads

p(x|m, d) =

1 + (x−m)/d

d
for m− d ≤ x ≤ m

1− (x−m)/d
d

for m ≤ x ≤ m + d

0 else .

Valid parameters for this distribution are m, d ∈ R with d > 0.
The class tent_dist is declared in the header file trng/tent_dist.hpp and its public inter-

face is given as follows:

namespace trng {

template<typename float_t=double>
class tent_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type m() const;
void m(result_type);
result_type d() const;
void d(result_type);
param_type(result_type m, result_type d);

};
tent_dist(result_type m, result_type d);
explicit tent_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type m() const;

68

4 TRNG classes

void m(result_type);
result_type d() const;
void d(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename tent_dist<float_t>::param_type &,
const typename tent_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename tent_dist<float_t>::param_type &,
const typename tent_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename tent_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename tent_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const tent_dist<float_t> &, const tent_dist<float_t> &);
template<typename float_t>
bool operator!=(const tent_dist<float_t> &, const tent_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const tent_dis<float_t>t &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, tent_dist<float_t> &);

}

4.2.13 Weibull distribution

parameters β, θ ∈ (0, ∞)
support (0, ∞)

mean θΓ
(

1 + 1
β

)
variance θ2

[
Γ
(

1 + 2
β

)
− Γ2

(
1 + 1

β

)]

Class weibull_dist provides random numbers
with Weibull distribution with parameters β and
θ. The probability distribution function reads

p(x|β, θ) =

0 for x < θ

β

θ

(x
θ

)β−1
e−(x/θ)β

for x ≥ θ .

Valid parameters for this distribution are β, θ ∈ R with β > 0 and θ > 0. For β = 1 Weibull
distribution degenerates to an exponential distribution and for β = 2 and θ =

√
2 · σ this

distribution is also known as Rayleigh distribution with parameter σ.
The class weibull_dist is declared in the header file trng/weibull_dist.hpp and its public

interface is given as follows:

69

4 TRNG classes

namespace trng {

template<typename float_t=double>
class weibull_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type beta() const;
void beta(result_type);
result_type theta() const;
void theta(result_type);
param_type(result_type beta, result_type theta);

};
weibull_dist(result_type beta, result_type theta);
explicit weibull_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type beta() const;
void beta(result_type);
result_type theta() const;
void theta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename weibull_dist<float_t>::param_type &,
const typename weibull_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename weibull_dist<float_t>::param_type &,
const typename weibull_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename weibull_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename weibull_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const weibull_dist<float_t> &, const weibull_dist<float_t> &);
template<typename float_t>
bool operator!=(const weibull_dist<float_t> &, const weibull_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &

70

4 TRNG classes

operator<<(std::basic_ostream<char_t, traits_t> &, const weibull_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, weibull_dist<float_t> &);

}

4.2.14 Extreme value distribution

parameters θ, η ∈ R, θ > 0
support (−∞, ∞)
mean η − γθ
variance π2θ2/6

γ denotes the Euler-Mascheroni
constant γ = 0.57721 . . .

Class extreme_value_dist provides random numbers
with extreme value distribution (also known as Gumbel
distribution) with parameters θ and η. The probability
distribution function reads

p(x|θ, η) =
1
θ

exp
(

η − x
θ
− exp

η − x
θ

)
.

Valid parameters for this distribution are θ, η ∈ R with θ > 0.
The class extreme_value_dist is declared in the header file trng/extreme_value_dist.hpp

and its public interface is given as follows:

namespace trng {

template<typename float_t=double>
class extreme_value_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type theta() const;
void theta(result_type);
result_type eta() const;
void eta(result_type);
param_type(result_type theta, result_type eta);

};
extreme_value_dist(result_type theta, result_type eta);
explicit extreme_value_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type theta() const;
void theta(result_type);
result_type eta() const;
void eta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>

71

4 TRNG classes

bool operator==(const typename extreme_value_dist<float_t>::param_type &,
const typename extreme_value_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename extreme_value_dist<float_t>::param_type &,
const typename extreme_value_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename extreme_value_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename extreme_value_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const extreme_value_dist<float_t> &, const extreme_value_dist<float_t> &);
template<typename float_t>
bool operator!=(const extreme_value_dist<float_t> &, const extreme_value_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const extreme_value_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, extreme_value_dist<float_t> &);

}

Note that the definition of the extreme value distribution differs slightly from the one that has
been introduced in C++11, see also section 6.4 and [22]. However, it is not difficult to switch
from the C++ standard library to TRNG and vice versa. More precisely

trng::extreme_value_dist<> D1(theta, eta);
std::extreme_value_distribution<> D2(eta, -theta);

yield two equivalent distributions.

4.2.15 Γ-distribution

parameters κ, θ ∈ (0, ∞)
support [0, ∞)
mean κθ
variance κθ2

Class gamma_dist provides random numbers with Γ-distri-
bution with parameters θ and κ. The probability distribution
function reads

p(x|θ, κ) =

0 if x < 0

1
θΓ(κ)

(x
θ

)κ−1
e−x/θ if x ≥ 0 .

Valid parameters for this distribution are κ, θ ∈ R with κ ≥ 1 and θ > 0. Note, Γ-distribution
is defined for arbitrary κ ≥ 0, but class gamma_dist can handle only Γ-distributions with κ ≥ 1
correctly. For κ = 1 the Γ-distribution degenerates to an exponential distribution.

The class gamma_dist is declared in the header file trng/gamma_dist.hpp and its public
interface is given as follows:

namespace trng {

72

4 TRNG classes

template<typename float_t=double>
class gamma_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type kappa() const;
void kappa(result_type);
result_type theta() const;
void theta(result_type);
param_type(result_type kappa, result_type theta);

};
gamma_dist(result_type kappa, result_type theta);
explicit gamma_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type kappa() const;
void kappa(result_type);
result_type theta() const;
void theta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename gamma_dist<float_t>::param_type &,
const typename gamma_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename gamma_dist<float_t>::param_type &,
const typename gamma_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename gamma_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename gamma_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const gamma_dist<float_t> &, const gamma_dist<float_t> &);
template<typename float_t>
bool operator!=(const gamma_dist<float_t> &, const gamma_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const gamma_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>

73

4 TRNG classes

std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, gamma_dist<float_t> &);

}

4.2.16 B-distribution

parameters α, β ∈ (0, ∞)
support [0, 1]
mean α/(α + β)
variance αβ/(α + β +

1)/(α + β)2

Class beta_dist provides random numbers with B-distri-
bution with parameters α and β. The probability distribu-
tion function reads with the Beta function B(α, β)

p(x|α, β) =

0 if x < 0 or x > 1

1
B(α, β)

xα−1(1− x)β−1 else .

Valid parameters for this distribution are α, β ∈ R with α > 0 and β > 0.
The class beta_dist is declared in the header file trng/beta_dist.hpp and its public inter-

face is given as follows:

namespace trng {

template<typename float_t=double>
class beta_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type alpha() const;
void alpha(result_type);
result_type beta() const;
void beta(result_type);
param_type(result_type alpha, result_type beta);

};
beta_dist(result_type alpha, result_type beta);
explicit beta_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
result_type alpha() const;
void alpha(result_type);
result_type beta() const;
void beta(result_type);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename beta_dist<float_t>::param_type &,

74

4 TRNG classes

const typename beta_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename beta_dist<float_t>::param_type &,
const typename beta_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename beta_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename beta_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const beta_dist<float_t> &, const beta_dist<float_t> &);
template<typename float_t>
bool operator!=(const beta_dist<float_t> &, const beta_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const beta_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, beta_dist<float_t> &);

}

4.2.17 χ2-distribution

parameter ν ∈N

support (0, ∞)
mean ν
variance 2ν

Class chi_square_dist provides random numbers with χ2-distri-
bution with ν degrees of freedom. The probability distribution
function reads

p(x|ν) =

0 if x < 0

xν/2−1e−x/2

2ν/2 Γ(ν/2)
if x ≥ 0 .

A valid parameter for this distribution is ν ∈N with ν ≥ 1. Note, χ2-distribution is a special
case of Γ-distribution with κ = ν/2 and θ = 2.

The class chi_square_dist is declared in the header file trng/chi_square_dist.hpp and
its public interface is given as follows:

namespace trng {

template<typename float_t=double>
class chi_square_dist {
public:
typedef float_t result_type;
class param_type {
public:
int nu() const;
void nu(int);
explicit param_type(int nu);

};

75

4 TRNG classes

explicit chi_square_dist(int nu);
explicit chi_square_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
int nu() const;
void nu(int);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename chi_square_dist<float_t>::param_type &,
const typename chi_square_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename chi_square_dist<float_t>::param_type &,
const typename chi_square_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename chi_square_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename chi_square_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const chi_square_dist<float_t> &, const chi_square_dist<float_t> &);
template<typename float_t>
bool operator!=(const chi_square_dist<float_t> &, const chi_square_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const chi_square_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, chi_square_dis<float_t>t &);

}

4.2.18 Student-t distribution

parameter ν ∈N

support (−∞, ∞)
mean 0
variance ν−1

ν−3

Class student_t_dist provides random numbers with Student-t
distribution with ν degrees of freedom. The probability distribution
function reads

p(x|ν) =
Γ(ν+1

2)√
νπ Γ(ν

2)

(
1 +

x2

ν

)−(ν+1
2)

.

76

4 TRNG classes

A valid parameter for this distribution is ν ∈N with ν ≥ 1.
The class student_t_dist is declared in the header file trng/student_t_dist.hpp and its

public interface is given as follows:

namespace trng {

template<typename float_t=double>
class student_t_dist {
public:
typedef float_t result_type;
class param_type {
public:
int nu() const;
void nu(int);
explicit param_type(int nu);

};
explicit student_t_dist(int nu);
explicit student_t_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
int nu() const;
void nu(int);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

template<typename float_t>
bool operator==(const typename student_t_dist<float_t>::param_type &,
const typename student_t_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename student_t_dist<float_t>::param_type &,
const typename student_t_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename student_t_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename student_t_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const student_t_dist &, const student_t_dist<float_t> &);
template<typename float_t>
bool operator!=(const student_t_dist &, const student_t_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &

77

4 TRNG classes

operator<<(std::basic_ostream<char_t, traits_t> &, const student_t_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, student_t_dist<float_t> &);

}

4.2.19 Snedecor-F distribution

parameter n, m ∈N

support [0, ∞)
mean m

m−2

variance 2m2(m+n−2)
n(m−2)2(m−4)

Class snedecor_fsnedecor_f_dist provides random num-
bers with Snedecor-F distribution (or Fisher-Snedecor distri-
bution) with parameters n and m. The probability distribution
function reads

p(x|n, m) =

0 if x < 0

Γ((n + m)/2)
Γ(n/2)Γ(m/2)

nn/2mm/2xn/2−1

(m + nx)(n+m)/2
if x ≥ 0 .

Valid parameters for this distribution are n, m ∈N with n, m ≥ 1.
The class snedecor_f_dist is declared in the header file trng/snedecor_f_dist.hpp and

its public interface is given as follows:

namespace trng {

template<typename float_t=double>
class snedecor_f_dist {
public:
typedef float_t result_type;
class param_type {
public:
int n() const;
void n(int);
int m() const;
void m(int);
param_type(int n, int m);

};
snedecor_f_dist(int n, int m);
explicit snedecor_f_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const;
void param(const param_type &);
int n() const;
void n(int);
int m() const;
void m(int);
result_type pdf(result_type) const;
result_type cdf(result_type) const;
result_type icdf(result_type) const;

};

78

4 TRNG classes

template<typename float_t>
bool operator==(const typename snedecor_f_dist<float_t>::param_type &,
const typename snedecor_f_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename snedecor_f_dist<float_t>::param_type &,
const typename snedecor_f_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename snedecor_f_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename snedecor_f_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const snedecor_f_dist<float_t> &, const snedecor_f_dist<float_t> &);
template<typename float_t>
bool operator!=(const snedecor_f_dist<float_t> &, const snedecor_f_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const snedecor_f_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, snedecor_f_dist<float_t> &);

}

4.2.20 Rayleigh distribution

parameter ν ∈ (0, ∞)
support (0, ∞)
mean ν

√
π/2

variance (4− π)ν2/2

Class rayleigh_dist provides random numbers with
Rayleigh distribution with parameter ν. The probability
distribution function reads

p(x|ν) =

0 if x ≤ 0
x
ν2 e−x2/(2ν2) if x > 0 .

A valid parameter for this distribution is ν > 0.
The class rayleigh_dist is declared in the header file trng/rayleigh_dist.hpp and its

public interface is given as follows:

namespace trng {

template<typename float_t=double>
class rayleigh_dist {
public:
typedef float_t result_type;
class param_type {
public:
result_type nu() const;
void nu(result_type nu_new);
explicit param_type(result_type nu);

79

4 TRNG classes

};

explicit rayleigh_dist(result_type nu);
explicit rayleigh_dist(const param_type &);
void reset();
template<typename R>
result_type operator()(R &);
template<typename R>
result_type operator()(R &, const param_type &);
result_type min() const;
result_type max() const;
param_type param() const { return p; }
void param(const param_type &);
result_type nu() const;
void nu(result_type);
result_type pdf(result_type x) const;
result_type cdf(result_type x) const;
result_type icdf(result_type x) const;

};

template<typename float_t>
bool operator==(const typename rayleigh_dist<float_t>::param_type &,
const typename rayleigh_dist<float_t>::param_type &);
template<typename float_t>
bool operator!=(const typename rayleigh_dist<float_t>::param_type &,
const typename rayleigh_dist<float_t>::param_type &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename rayleigh_dist<float_t>::param_type &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename rayleigh_dist<float_t>::param_type &);

template<typename float_t>
bool operator==(const rayleigh_dist<float_t> &, const rayleigh_dist<float_t> &);
template<typename float_t>
bool operator!=(const rayleigh_dist<float_t> &, const rayleigh_dist<float_t> &);

template<typename char_t, typename traits_t, typename float_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const rayleigh_dist<float_t> &);
template<typename char_t, typename traits_t, typename float_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, rayleigh_dist<float_t> &);

}

4.2.21 Bernoulli distribution

parameter p ∈ [0, 1]
support 0, 1
mean p/2
variance p2/12

The template class bernoulli_dist provides random objects with
Bernoulli distribution with parameter p. The probability distribu-

80

4 TRNG classes

tion function reads

P(x|p) =

p if x = 0 (head)
1− p if x = 1 (tail)
0 else .

A valid parameter for this distribution is p ∈ [0, 1].
The class bernoulli_dist is declared in the header file trng/bernoulli_dist.hpp and its

public interface is given as follows:

namespace trng {

template<typename T>
class bernoulli_dist {
public:
typedef T result_type;

class param_type {
public:
double p() const;
void p(double);
T head() const;
void head(const T &);
T tail() const;
void tail(const T &);
param_type(double p, const T &head, const T &tail);

};

bernoulli_dist(double p, const T &head, const T &tail);
explicit bernoulli_dist(const param_type &);
void reset();
template<typename R>
T operator()(R &);
template<typename R>
T operator()(R &, const param_type &);

Method min returns “head” and method max returns “tail”.

T min() const;
T max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
T head() const;
void head(const T &);
T tail() const;
void tail(const T &);

Method pdf will return p if its argument is “head”, 1 − p if its argument is “tail” and 0
otherwise.

double pdf(const T &) const;

Method cdf will return p if its argument is “head”, 1 if its argument is “tail” and 0 otherwise.

double cdf(const T &) const;
};

81

4 TRNG classes

template<typename T>
bool operator==(const typename bernoulli_dist<T>::param_type &,
const typename bernoulli_dist<T>::param_type &);
template<typename T>
bool operator!=(const typename bernoulli_dist<T>::param_type &,
const typename bernoulli_dist<T>::param_type &);

template<typename char_t, typename traits_t, typename T>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &,
const typename bernoulli_dist<T>::param_type &);
template<typename char_t, typename traits_t, typename T>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &,
typename bernoulli_dist<T>::param_type &);

template<typename T>
bool operator==(const bernoulli_dist<T> &, const bernoulli_dist<T> &);
template<typename T>
bool operator!=(const bernoulli_dist<T> &, const bernoulli_dist<T> &);

template<typename char_t, typename traits_t, typename T>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const bernoulli_dist<T> &);
template<typename char_t, typename traits_t, typename T>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, bernoulli_dist<T> &);

}

4.2.22 Binomial distribution

parameters p ∈ [0, 1], n ∈N

support 0, 1, . . . , n
mean np
variance np(1− p)

Class binomial_dist provides random integers with bi-
nomial distribution with parameters p and n. The prob-
ability distribution function reads

P(x|p, n) =

(

n
x

)
px(1− p)n−x if x ∈ {0, 1, . . . , n}

0 else .

Valid parameters for this distribution are p ∈ [0, 1] and n ∈N.
The class binomial_dist is declared in the header file trng/binomial_dist.hpp and its

public interface is given as follows:

namespace trng {

class binomial_dist {
public:
typedef int result_type;

class param_type {
public:
double p() const;
void p(double);

82

4 TRNG classes

Listing 4.2: Class bernoulli_dist in action.
1 #include <cstdlib>
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <trng/lcg64.hpp>
6 #include <trng/bernoulli_dist.hpp>
7
8 typedef enum { head = 0, tail = 1 } coin;
9

10 int main() {
11 // discrete distribution object
12 trng::bernoulli_dist<coin> biased_coin(0.51, head, tail);
13 // random number generator
14 trng::lcg64 r;
15 // draw some random numbers
16 std::vector<int> count(2, 0);
17 const int samples = 100000;
18 for (int i = 0; i < samples; ++i) {
19 int x = biased_coin(r); // draw a random number
20 ++count[x]; // count
21 }
22 // print results
23 std::cout << "value\t\tprobability\tcount\t\tempirical probability\n"
24 << "=====\t\t===========\t=====\t\t=====================\n";
25 for (std::vector<int>::size_type i = 0; i < count.size(); ++i)
26 std::cout << std::setprecision(3) << i << "\t\t " << biased_coin.pdf(static_cast<coin>(i))
27 << "\t\t " << count[i] << "\t\t " << static_cast<double>(count[i]) / samples
28 << ’\n ’;
29 return EXIT_SUCCESS;
30 }

int n() const;
void n(int);
param_type(double p, int n);

};

binomial_dist(double p, int n);
explicit binomial_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
int n() const;
void n(int);
double pdf(int) const;
double cdf(int) const;

83

4 TRNG classes

};

bool operator==(const binomial_dist::param_type &, const binomial_dist::param_type &);
bool operator!=(const binomial_dist::param_type &, const binomial_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const binomial_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, binomial_dist::param_type &);

bool operator==(const binomial_dist &, const binomial_dist &);
bool operator!=(const binomial_dist &, const binomial_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const binomial_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, binomial_dist &);

}

4.2.23 Negative binomial distribution

parameters p ∈ [0, 1], r ∈N

support 0, 1, . . .
mean r(1− p)/p
variance r(1− p)/p2

Class negative_binomial_dist provides random inte-
gers with negative binomial distribution with param-
eters p and r. This distribution is also known as
gamma–Poisson (mixture) distribution. The probabil-
ity distribution function reads

P(x|p, r) =

Γ(r + x)
x!Γ(r)

pr(1− p)x if x ∈ {0, 1, . . . }

0 else .

Valid parameters for this distribution are p ∈ [0, 1] and r ∈ (0, ∞).
The class negative_binomial_dist is declared in the header file trng/negative_binomial_

dist.hpp and its public interface is given as follows:

namespace trng {

class negative_binomial_dist {
public:
typedef int result_type;

class param_type {
public:
double p() const;
void p(double);
int r() const;
void r(int);
param_type(double p, double r);

};

84

4 TRNG classes

negative_binomial_dist(double p, double r);
explicit negative_binomial_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
double r() const;
void r(double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const negative_binomial_dist::param_type &,
const negative_binomial_dist::param_type &);
bool operator!=(const negative_binomial_dist::param_type &,
const negative_binomial_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const negative_binomial_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, negative_binomial_dist::param_type &);

bool operator==(const negative_binomial_dist &, const negative_binomial_dist &);
bool operator!=(const negative_binomial_dist &, const negative_binomial_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const negative_binomial_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, negative_binomial_dist &);

}

4.2.24 Hypergeometric distribution

parameters n ∈N, m ∈ {0, 1, . . . , n}, d ∈ {1, 2, . . . , n}
support max(0, d− n + m), . . . , min(d, m)
mean dm/n

variance d
m
n

(
1− m

n

) n− d
n− 1

Class hypergeometric_dist pro-
vides random integers with hy-
pergeometric distribution with
parameters n, m and d. The
probability distribution function

85

4 TRNG classes

reads

P(x|n, m, d) =

(
m
x

)(
n−m
d− x

)
(

n
d

) if x ∈ {max(0, d− n + m), . . . , min(d, m)} ,

0 else .

Valid parameters for this distribution are n ∈N, m ∈ {0, 1, . . . , n}, and d ∈ {1, 2, . . . , n},
The class hypergeometric_dist is declared in the header file trng/hypergeometric_dist.

hpp and its public interface is given as follows:

namespace trng {

class hypergeometric_dist {
public:
typedef int result_type;

class param_type {
public:
int n() const;
void n(int);
int m() const;
void m(int);
int d() const;
void d(int);
param_type(int n, int m, int d);

};

hypergeometric_dist(double n, int m, int d);
explicit hypergeometric_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
int n() const;
void n(int);
int m() const;
void m(int);
int d() const;
void d(int);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const hypergeometric_dist::param_type &,
const hypergeometric_dist::param_type &);
bool operator!=(const hypergeometric_dist::param_type &,
const hypergeometric_dist::param_type &);

template<typename char_t, typename traits_t>

86

4 TRNG classes

std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const hypergeometric_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, hypergeometric_dist::param_type &);

bool operator==(const hypergeometric_dist &, const hypergeometric_dist &);
bool operator!=(const hypergeometric_dist &, const hypergeometric_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const hypergeometric_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, hypergeometric_dist &);

}

4.2.25 Geometric distribution

parameter p ∈ (0, 1)
support 0, 1, . . .
mean (1− p)/p
variance (1− p)/p2

Class geometric_dist provides random integers with geometric
distribution with parameter p. The probability distribution function
reads

P(x|p) = p(1− p)x for x ∈ {0, 1, . . . }.

A valid parameter p is p ∈ (0, 1).
The class geometric_dist is declared in the header file trng/geometric_dist.hpp and its

public interface is given as follows:

namespace trng {

class geometric_dist {
public:
typedef int result_type;

class param_type {
public:
double p() const;
void p(double);
explicit param_type(double p);

};

explicit geometric_dist(double p);
explicit geometric_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double p() const;
void p(double);
double pdf(int) const;

87

4 TRNG classes

double cdf(int) const;
};

bool operator==(const geometric_dist::param_type &, const geometric_dist::param_type &);
bool operator!=(const geometric_dist::param_type &, const geometric_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const geometric_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, geometric_dist::param_type &);

bool operator==(const geometric_dist &, const geometric_dist &);
bool operator!=(const geometric_dist &, const geometric_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const geometric_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, geometric_dist &);

}

4.2.26 Poisson distribution

parameter µ ∈ [0, ∞)
support 0, 1, . . .
mean µ
variance µ

Class poisson_dist provides random integers with Poisson distri-
bution with mean µ. The probability distribution function reads

P(x|µ) = e−µµx

x!
for x ∈ {0, 1, . . . }.

A valid parameter µ is µ ∈ [0, ∞).
The class poisson_dist is declared in the header file trng/poisson_dist.hpp and its public

interface is given as follows:

namespace trng {

class poisson_dist {
public:
typedef int result_type;

class param_type {
public:
double mu() const;
void mu(double);
explicit param_type(double mu);

};

explicit poisson_dist(double mu);
explicit poisson_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);

88

4 TRNG classes

int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double mu() const;
void mu(double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const poisson_dist::param_type &, const poisson_dist::param_type &);
bool operator!=(const poisson_dist::param_type &, const poisson_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const poisson_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, poisson_dist::param_type &);

bool operator==(const poisson_dist &, const poisson_dist &);
bool operator!=(const poisson_dist &, const poisson_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const poisson_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, poisson_dist &);

}

4.2.27 Zero-truncated Poisson distribution

parameter µ ∈ [0, ∞)
support 1, 2, . . .
mean µeµ

1−eµ

variance µeµ

1−eµ

(
1− µ

1−eµ

)
Class zero_truncated_poisson_dist provides
random integers with zero-truncated Poisson
distribution (also known as the conditional
Poisson distribution or the positive Poisson
distribution) with parameter µ. It is the con-
ditional probability distribution of a Poisson-
distributed random variable, given that the value of the random variable is not zero. The
probability distribution function reads

P(x|µ) = e−µµx

x!(1− e−µ)
for x ∈ {1, 2, . . . }.

A valid parameter µ is µ ∈ [0, ∞).
The class zero_truncated_poisson_dist is declared in the header file trng/zero_truncated_

poisson_dist.hpp and its public interface is given as follows:

namespace trng {

class zero_truncated_poisson_dist {
public:
typedef int result_type;

89

4 TRNG classes

class param_type {
public:
double mu() const;
void mu(double);
explicit param_type(double mu);

};

explicit zero_truncated_poisson_dist(double mu);
explicit zero_truncated_poisson_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double mu() const;
void mu(double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const zero_truncated_poisson_dist::param_type &,
const zero_truncated_poisson_dist::param_type &);
bool operator!=(const zero_truncated_poisson_dist::param_type &,
const zero_truncated_poisson_dist::param_type &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const zero_truncated_poisson_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, zero_truncated_poisson_dist::param_type &);

bool operator==(const zero_truncated_poisson_dist &, const zero_truncated_poisson_dist &);
bool operator!=(const zero_truncated_poisson_dist &, const zero_truncated_poisson_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const zero_truncated_poisson_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, zero_truncated_poisson_dist &);

}

4.2.28 Discrete distribution

The general probability distribution function for integers in [0, 1, . . . , n− 1] is determined by a
set of n non-negative weights pi (i = 0, 1, . . . , n− 1) and reads

P(x|{pi}) =
px

∑n−1
i=0 pi

for x ∈ {0, 1, . . . , n− 1}.

90

4 TRNG classes

TRNG provides two classes for the generation of random integers with a general discrete
distribution, class discrete_dist and fast_discrete_dist. Both classes provide basically
the same interface but they are implemented by different internal data structures and feature
different performance characteristics.

The classes discrete_dist and fast_discrete_dist have several different construc-
tors. The constructor discrete_dist(int n) (fast_discrete_dist(int n)) sets up a
flat distribution of n integers, each integer has the same statistical weight. Another way
to construct an object of the class discrete_dist (fast_discrete_dist) is to pass the
weights pi to the constructor discrete_dist(iter first, iter last); (fast_discrete_
dist(iter first, iter last);) by some iterator range.

Drawing a random number from a general discrete distribution is a O (log n) operation for
discrete_dist, while fast_discrete_dist is able to carryout this operation in constant time.
For small n the performance difference is negligible, but for large n (n ' 1 000) becomes more
and more important and therefore fast_discrete_dist will be used in most cases.

The method param(int, double) allows to change relative probability of a single relative
probability pi after an object of the type discrete_dist has been constructed. This will
cause an update of the internal data structures that costs O (log n) operation. Note that
fast_discrete_dist does not allow to change relative probabilities and does not provide a
method param(int, double). This is the price we have to pay for performance.

The class discrete_dist is declared in the header file trng/discrete_dist.hpp and its
public interface is given as follows:

namespace trng {

class discrete_dist {
public:
typedef int result_type;
class param_type {
public:
template<typename iter>
explicit param_type(iter first, iter last);

};

discrete_dist(int n);
template<typename iter>
discrete_dist(iter first, iter last);
explicit discrete_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
void param(int, double);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const discrete_dist::param_type &, const discrete_dist::param_type &);
bool operator!=(const discrete_dist::param_type &, const discrete_dist::param_type &);

91

4 TRNG classes

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const discrete_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, discrete_dist::param_type &);

bool operator==(const discrete_dist &, const discrete_dist &);
bool operator!=(const discrete_dist &, const discrete_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const discrete_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, discrete_dist &);

}

The files discrete_dist.cc (see Listing 4.3) and discrete_dist_c_style.cc in the TRNG
source distribution demonstrate the usage of the class discrete_dist in detail.

The class fast_discrete_dist is declared in the header file trng/fast_discrete_dist.hpp
and its public interface is given as follows:

namespace trng {

class fast_discrete_dist {
public:
typedef int result_type;
class param_type {
public:
template<typename iter>
explicit param_type(iter first, iter last);

};

fast_discrete_dist(int n);
template<typename iter>
fast_discrete_dist(iter first, iter last);
explicit fast_discrete_dist(const param_type &);
void reset();
template<typename R>
int operator()(R &);
template<typename R>
int operator()(R &, const param_type &);
int min() const;
int max() const;
param_type param() const;
void param(const param_type &);
double pdf(int) const;
double cdf(int) const;

};

bool operator==(const fast_discrete_dist::param_type &,
const fast_discrete_dist::param_type &);
bool operator!=(const fast_discrete_dist::param_type &,
const fast_discrete_dist::param_type &);

92

4 TRNG classes

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const fast_discrete_dist::param_type &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, fast_discrete_dist::param_type &);

bool operator==(const fast_discrete_dist &, const fast_discrete_dist &);
bool operator!=(const fast_discrete_dist &, const fast_discrete_dist &);

template<typename char_t, typename traits_t>
std::basic_ostream<char_t, traits_t> &
operator<<(std::basic_ostream<char_t, traits_t> &, const fast_discrete_dist &);
template<typename char_t, typename traits_t>
std::basic_istream<char_t, traits_t> &
operator>>(std::basic_istream<char_t, traits_t> &, fast_discrete_dist &);

}

4.3 Function template generate_canonical

In this section we describe a function template introduced by [7]. Each function instantiated
from the template generate_canonical maps the result of a single invocation of a supplied
uniform random number generator to one member of the set L (described below) such that, if
the values produced by the generator are uniformly distributed, the results of the instantiation
are distributed as uniformly as possible according to the uniformity requirements described
below.

Let L consist of all values t of type result_type such that:

• If result_type is a floating-point type, result_type(0) < t < result_type(1).
• If result_type is a signed or unsigned integral type, then t

lays in the range numeric_limits<result_type>::min() ≤ t ≤
numeric_limits<result_type>::max().

Obtaining a value in L can be a useful step in the process of transforming a value generated by
a uniform random number generator into a value that can be delivered by a random number
distribution. The function template

template<class result_type, class UniformRandomNumberGenerator>
result_type generate_canonical(UniformRandomNumberGenerator &g);

returns a value from L by exactly one invocation of g, see [7] for details.

4.4 CUDA support

TRNG may be utilized in parallel Monte Carlo simulations. It does not depend on a specific
parallelization technique, e. g., POSIX threads, MPI or others. TRNG also supports CUDA.
CUDA is a parallel architecture and programming model for general purpose computations
on graphics processing units (GPUs). GPU computing is enabled by the CUDA programming

93

4 TRNG classes

Listing 4.3: Class discrete_dist in action.
1 #include <cstdlib>
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <trng/lcg64.hpp>
6 #include <trng/discrete_dist.hpp>
7
8 int main() {
9 std::vector<double> p; // stores relative probabilities

10 // populate vector with relative probabilities
11 p.push_back(1);
12 p.push_back(3.25);
13 p.push_back(5);
14 p.push_back(6.5);
15 p.push_back(7);
16 p.push_back(2);
17 // discrete distribution object
18 trng::discrete_dist dist(p.begin(), p.end());
19 // random number generator
20 trng::lcg64 r;
21 // draw some random numbers
22 std::vector<int> count(p.size(), 0);
23 const int samples = 10000;
24 for (int i = 0; i < samples; ++i) {
25 int x = dist(r); // draw a random number
26 ++count[x]; // count
27 }
28 // print results
29 std::cout << "value\t\tprobability\tcount\t\tempirical probability\n"
30 << "=====\t\t===========\t=====\t\t=====================\n";
31 for (std::vector<int>::size_type i = 0; i < count.size(); ++i) {
32 std::cout << std::setprecision(3) << i << "\t\t " << dist.pdf(static_cast<int>(i)) << "\t\t "
33 << count[i] << "\t\t " << static_cast<double>(count[i]) / samples << ’\n ’;
34 }
35 return EXIT_SUCCESS;
36 }

model that provides a set of abstractions that enable to express data parallelism and task
parallelism. This programming model is implemented by equipping the sequential C++
programming language with extensions for parallel execution of so-called kernel functions
on a GPU and providing an application programming interface. GPU kernel functions are
implemented by a subset of the C++ programming language. See the [1, 24] for details.

Because there are some C++ features that can not be used in GPU functions not all TRNG
classes and functions can be utilized in GPU code. For example, only parallel random number
engines may be used in GPU code, see Table 4.1. One may call the methods split, jump and
jump2 or one of the call-operators of parallel random number engines. Other parallel random
number engine methods are not callable from GPU code, not even the constructor. Thus, a
parallel random number engine instance has to be constructed in CPU code and later to be
copied to the GPU before it may be used on the GPU, see Listing 6.6 for an example.

The function template generate_canonical and random number distributions may be used

94

4 TRNG classes

for GPU code in the same way as in CPU code without any restrictions. Except the following
distributions: correlated_normal_dist, binomial_dist, hypergeometric_dist, geometric_
dist, poisson_dist, zero_truncated_poisson_dist and discrete_dist, they provide no
CUDA support at all. These restrictions might be lifted in future TRNG releases.

95

5 Installation

To make the installation procedure portable and comfortable, TRNG utilizes the CMake build
configuration generator. For a proper installation you will need

• CMake version 3.10 or later,
• a recent C++ compiler that implements the C++11 language standard and
• a make tool or an integrated environment with cmake support, e. g., Microsoft Visual

Studio, Clion, Xcode or Eclipse.

TRNG comes with numerous sample programs that illustrate the usage of the TRNG library.
Some of these sample programs will use external libraries, i. e.:

• Boost C++ libraries, [6]
• an implementation of the Message Passing Interface (MPI) standard (various open source

implementations can be found at [51, 48])
• Intel Threading Building Blocks [20].

If you want to compile all sample programs, you will have to install these libraries as well. But
TRNG does not depend on any of the libraries listed above.

CMake can generate configurations for various build systems, e. g., Makefiles, which are
typically employed on Unix-like systems, Visual Studio project files on Windows, or project
files for various other integrated development environments. For example, Clion and Visual
Studio 2019 come with build-in CMake support [9] and CMake is included in most Linux
distributions. After the sources have been extracted from the source archive or have been
installed via git, the build configuration needs to be generated by CMake. In the following, the
installation procedure on a typical Unix-like environment (BSD, Linux, Cygwin, etc.) will be
given. For compilation in an integrated development environment read the documentation
of your preferred tool. For Microsoft Visual Studio this is described in the Visual Studio
documentation [9].

On a Unix-like box, just call the cmake tool to find your C++ compiler and to generate a set
of Makefiles. It is good practice to setup an out-of source build in a separate directory. For this
purpose, Makefiles are generated by the following sequence of shell commands

bauke@hal:~/trng-4.22$ mkdir build
bauke@hal:~/trng-4.22$ cd build
bauke@hal:~/trng-4.22/build$ cmake ..

The cmake tool may be controlled by various options and shell variables, see [8] for details. If
no options are provided to TRNG will be installed in the /usr/local hierarchy. Call

bauke@hal:~/trng-4.22/build$ cmake --help

to get an overview about all options. Here a complex example: to compile TRNG with the
Intel C++ compiler icpc and to install the library and the header files in /opt/trng call

bauke@hal:~/trng-4.22/build$ CXX=icpc cmake -DCMAKE_INSTALL_PREFIX=/opt/trng ..

96

5 Installation

After TRNG has been configured and Makefiles have been generated by CMake, the library
can be compiled and installed by the make tool.

bauke@hal:~/trng-4.22/build$ make
bauke@hal:~/trng-4.22/build$ make install

Compilation of the TRNG library generates a static as well as a shared library unless TRNG is
compiled in Visual Studio where only static libraries are supported by CMake. Depending
on your system further steps might be necessary to make the TRNG shared library known to
the dynamic linker. On a Linux system the system administrator has to call ldconfig or you
might set the LD_LIBRARY_PATH environment variable. See also the ld.so man page for further
information.

In the source directory examples you will find some example programs. These sources are
compiled also during the compilation of the TRNG library provided that all required third
party libraries (Boost etc.) have been found by the cmake tool.

97

6 Examples

6.1 Hello world!

In listing 6.1 we present the simplest nontrivial C++ program that produces pseudo-random
numbers by TRNG. Whenever one generates random numbers with TRNG at least two header
files have to be included, one for a random number engine and one for a distribution function,
see lines 4 and 5 in listing 6.1. In lines 9 and 11 respectively a random number engine and a
random number distribution are declared. The parameters of a random number distribution
object have to be specified by its declaration. In our example random numbers with a normal
distribution with mean 6 and standard deviation of 2 are generated. Distribution parameters
can be changed at run-time, if necessary. In the loop in lines 13 and 14 the random number
engine object R and the random number distribution object normal are used to generate 1000
random numbers.

The program hello_world.cc has to be linked to the TRNG library. Using the GNU C++
compiler we transform the sources by

bauke@hal:~$ g++ -o hello_world hello_world.cc -ltrng4

into an executable.
In a second example we want to calculate an approximate value for π by a parallel Monte

Carlo calculation. The general idea of this calculation is to choose random points in a square
with edge length R. Some of these points fall into a sector of a circle in the square, see Figure 6.1.
The value of π can be approximated by considering the fraction of points that fall into the

Listing 6.1: A simple TRNG sample program hello_world.cc that generates 1000 random variables
with normal distribution.

1 #include <cstdlib>
2 #include <iostream>
3 // include TRNG header f i l e s
4 #include <trng/yarn2.hpp>
5 #include <trng/normal_dist.hpp>
6
7 int main() {
8 // random number engine
9 trng::yarn2 R;

10 // normal distribution with mean 6 and standard deviation 2
11 trng::normal_dist<> normal(6.0, 2.0);
12 // generate 1000 normal distributed random numbers
13 for (int i = 0; i < 100000; ++i)
14 std::cout << normal(R) << ’\n ’;
15 return EXIT_SUCCESS;
16 }

98

6 Examples

R

R

Figure 6.1: The numerical value of π can be estimated by throwing random points into a square.

circle. From the relation

number of points in circle
number of points in square

≈ πR2/4
R2 =

π

4

we conclude
π ≈ 4

number of points in circle
number of points in square

.

In listing 6.2 we use this equation to estimate π. In the for-loop in lines 12 to 16 a random
x-coordinate and a random y-coordinate are chosen. Both coordinates are independently
uniformly distributed in [0, 1). If

√
x2 + y2 < 1, or equivalently x2 + y2 < 1, the point (x, y)

lies within the circle. The program draws a huge number of points from the square and
counts the number of points lying within the circle and at the end of the program the fraction
4 · (points in circle)/(points in square) is shown as an estimate for π.

Listing 6.2: Sequential Monte Carlo calculation of π.
1 #include <cstdlib>
2 #include <iostream>
3 #include <trng/yarn2.hpp>
4 #include <trng/uniform01_dist.hpp>
5
6 int main() {
7 const long samples = 1000000l; // total number of points in square
8 long in = 0l; // no points in circ le
9 trng::yarn2 r; // random number engine

10 trng::uniform01_dist<> u; // random number distribution
11 // throw random points into square
12 for (long i = 0; i < samples; ++i) {
13 double x = u(r), y = u(r); // choose random x− and y−coordinates
14 if (x * x + y * y <= 1.0) // is point in circ le ?
15 ++in; // increase counter
16 }
17 std::cout << "pi = " << 4.0 * in / samples << std::endl;
18 return EXIT_SUCCESS;
19 }

99

6 Examples

6.2 Hello parallel world!

TRNG is a very flexible random number generator library. It allows for sequential as well as
for parallel applications. The library does not depend on any particular communication library.
It may be utilized with Message Passing Interface (MPI), OpenMP, and as well as with POSIX
threads, or any other communication library. This section gives a short tutorial on writing
parallel Monte Carlo applications with TRNG and various parallel programming models, e. g.
MPI or OpenMP. Here we cannot give an introduction to MPI or OpenMP readers who are not
familiar with parallel programming may consult [52, 4, 56, 58] instead.

How can we parallelize the Monte Carlo calculation of π? A striking feature of the Monte
Carlo π calculation algorithm (from the previous section): the placement of some point in
the square does not affect the placement of other points. In other words: throwing N points
into a square is an embarrassingly parallel process. Everything that matters, is the fraction of
points in the square that had been placed into the circle. Keeping this fact in mind the Monte
Carlo calculation of π can be parallelized easily via the block splitting method or the leapfrog
method.

6.2.1 Block splitting

Let us apply the block splitting parallelization technique as introduced in section 2. A total
of N points has to be selected by p processes. We number the points from 0 to N − 1 and the
processes from 0 to p− 1 respectively. The number of a process is called its rank. To distribute
the workload equally, we split the entire set of N points into p consecutive blocks of about
N/p points. To be specific, a process with rank r selects the points with numbers

bN · r/pc to bN · (r + 1)/pc − 1 ,

where b·c denotes rounding to zero. Each point is determined by two coordinates and a process
with rank r consumes

2 (bN · (r + 1)/pc − bN · r/pc)

random numbers, which are generated by the same random number engine.
All concurrent processes generate random points by their own local copy of the same random

number engine. Of course, if all these engines start from the same initial state, they will produce
the same sequence of random numbers. For that reason each process jumps 2bN · r/pc steps
ahead, before any random numbers are consumed. This ensures that sequences of random
numbers of two different processes never overlap, and furthermore, the outcome of the
parallelized program is the same as for the sequential in the previous section, even in its
statistical errors.

Listing 6.3 presents an implementation of the parallel Monte Carlo computation of π by
MPI, while in listing 6.4 an implementation presented that is based on OpenMP. Note the
parenthesis within the argument of the jump method in lines 15 and 17 respectively. Together
with the C++ rounding rules they are the C++ equivalent to the b·c function.

There is one important conceptual difference between the MPI version and the OpenMP
implementation. While MPI is based on a distributed memory model, OpenMP can utilize
shared memory. For that reason the MPI program counts how many points lie in the circle for
each process in a process local variable in. At the end of the computation the process local
variables have to be summed up by MPI::COMM_WORLD.Reduce to the (process local) variable

100

6 Examples

Listing 6.3: Parallel Monte Carlo calculation of π using block splitting and MPI.
1 #include <trng/yarn2.hpp>
2 #include <trng/uniform01_dist.hpp>
3
4 int main(int argc, char *argv[]) {
5 const long samples = 1000000l; // total number of points in square
6 trng::yarn2 r; // random number engine
7 MPI::Init(argc, argv); // i n i t i a l i s e MPI environment
8 int size = MPI::COMM_WORLD.Get_size(); // get total number of processes
9 int rank = MPI::COMM_WORLD.Get_rank(); // get rank of current process

10 long in = 0l; // number of points in circ le
11 trng::uniform01_dist<> u; // random number distribution
12 r.jump(2 * (rank * samples / size)); // jump ahead
13 // throw random points into square and distribute workload over a l l processes
14 for (long i = rank * samples / size; i < (rank + 1) * samples / size; ++i) {
15 double x = u(r), y = u(r); // choose random x− and y−coordinates
16 if (x * x + y * y <= 1.0) // is point in circ le ?
17 ++in; // increase counter
18 }
19 // calculate sum of a l l local variables ’ in ’ and storre result in ’ in_all ’ on process 0
20 long in_all;
21 MPI::COMM_WORLD.Reduce(&in, &in_all, 1, MPI::LONG, MPI::SUM, 0);
22 if (rank == 0) // print result
23 std::cout << "pi = " << 4.0 * in_all / samples << std::endl;
24 MPI::Finalize(); // quit MPI
25 return EXIT_SUCCESS;
26 }

Listing 6.4: Parallel Monte Carlo calculation of π using block splitting and OpenMP.
1 #include <trng/yarn2.hpp>
2 #include <trng/uniform01_dist.hpp>
3
4 int main() {
5 const long samples = 1000000l; // total number of points in square
6 long in = 0l; // number of points in circ le
7 // distribute workload over a l l processes and make a global reduction
8 #pragma omp parallel reduction(+ : in) default(none)
9 {

10 trng::yarn2 r; // random number engine
11 int size = omp_get_num_threads(); // get total number of processes
12 int rank = omp_get_thread_num(); // get rank of current process
13 trng::uniform01_dist<> u; // random number distribution
14 r.jump(2 * (rank * samples / size)); // jump ahead
15 // throw random points into square
16 for (long i = rank * samples / size; i < (rank + 1) * samples / size; ++i) {
17 double x = u(r), y = u(r); // choose random x− and y−coordinates
18 if (x * x + y * y <= 1.0) // is point in circ le ?
19 ++in; // increase thread−local counter
20 }
21 }
22 // print result
23 std::cout << "pi = " << 4.0 * in / samples << std::endl;
24 return EXIT_SUCCESS;
25 }

101

6 Examples

Listing 6.5: Parallel Monte Carlo calculation of π using block splitting and Intel Threading Building
Blocks.

1 #include <trng/uniform01_dist.hpp>
2 #include <tbb/task_scheduler_init.h>
3 #include <tbb/blocked_range.h>
4 #include <tbb/parallel_reduce.h>
5
6 class parallel_pi {
7 trng::uniform01_dist<> u; // random number distribution
8 const trng::yarn2 &r;
9 long in;

10
11 public:
12 void operator()(const tbb::blocked_range<long> &range) {
13 trng::yarn2 r_local(r); // local copy of random number engine
14 r_local.jump(2 * range.begin()); // jump ahead
15 for (long i = range.begin(); i != range.end(); ++i) {
16 double x = u(r_local), y = u(r_local); // choose random x− and y−coordinates
17 if (x * x + y * y <= 1.0) // is point in circ le ?
18 ++in; // increase thread−local counter
19 }
20 }
21 // join threds and counters
22 void join(const parallel_pi &other) { in += other.in; }
23 long in_circle() const { return in; }
24 explicit parallel_pi(const trng::yarn2 &r) : r(r), in(0) {}
25 explicit parallel_pi(const parallel_pi &other, tbb::split) : r(other.r), in(0) {}
26 };
27
28 int main() {
29 tbb::task_scheduler_init init; // i n i t i a l l i z e TBB task scheduler
30 const long samples = 1000000l; // total number of points in square
31 trng::yarn2 r; // random number engine
32 parallel_pi pi(r); // functor for parallel reduce
33 // parallel MC computation of pi
34 tbb::parallel_reduce(tbb::blocked_range<long>(0, samples), pi, tbb::auto_partitioner());
35 // print result
36 std::cout << "pi = " << 4.0 * pi.in_circle() / samples << std::endl;
37 return EXIT_SUCCESS;
38 }

102

6 Examples

Listing 6.6: Parallel Monte Carlo calculation of π using block splitting and CUDA.
1 #include <cstdlib>
2 #include <iostream>
3 #include <trng/yarn5s.hpp>
4 #include <trng/uniform01_dist.hpp>
5
6 __global__ void parallel_pi(long samples, long *in, trng::yarn5s r) {
7 long rank = threadIdx.x;
8 long size = blockDim.x;
9 r.jump(2 * (rank * samples / size)); // jump ahead

10 trng::uniform01_dist<float> u; // random number distribution
11 in[rank] = 0; // local number of points in circ le
12 for (long i = rank * samples / size; i < (rank + 1) * samples / size; ++i) {
13 float x = u(r), y = u(r); // choose random x− and y−coordinates
14 if (x * x + y * y <= 1) // is point in circ le ?
15 ++in[rank]; // increase thread−local counter
16 }
17 }
18
19 int main(int argc, char *argv[]) {
20 const long samples = 1000000l; // total number of points in square
21 const int size = 128; // number of threads
22 long *in_device;
23 cudaMalloc(&in_device, size * sizeof(*in_device));
24 trng::yarn5s r;
25 // start parallel Monte Carlo
26 parallel_pi<<<1, size>>>(samples, in_device, r);
27 // gather results
28 long *in = new long[size];
29 cudaMemcpy(in, in_device, size * sizeof(*in), cudaMemcpyDeviceToHost);
30 long sum = 0;
31 for (int rank = 0; rank < size; ++rank)
32 sum += in[rank];
33 // print result
34 std::cout << "pi = " << 4.0 * sum / samples << std::endl;
35 return EXIT_SUCCESS;
36 }

in_all on the process with rank zero. In a OpenMP program this global reduction can be
avoided by using a shared memory variable. But here concurrent write accesses to in have to
be prevented by the pragma omp critical in lines 23 to 24.

Listing 6.5 shows another block splitting Monte Carlo calculation of π that is based on the
Intel Threading Building Blocks [20, 58]. To give a detailed introduction to this excellent C++
library is beyond the scope of the TRNG documentation. The reader should note the following
special features of the Intel Threading Building Blocks and listing 6.5. The (thread) parallel
computation is based on the function tbb::parallel_reduce. This function requires a class
object that implements the task that has to be parallelized. However, the programmer does not
specify how the global task is divided into smaller subtasks. Work distribution, load balancing
and reduction of the global result (number of points in the square) are handled by the Intel
Threading Building Blocks library.

Listing 6.6 shows a block splitting Monte Carlo calculation of π using CUDA. For CUDA we
have to leap frog the random number engines in host memory and to copy random number
engines to device memory before the parallel Monte Carlo calculation can be carried out.

103

6 Examples

Listing 6.7: Parallel Monte Carlo calculation of π using leapfrog and MPI.
1 #include <trng/yarn2.hpp>
2 #include <trng/uniform01_dist.hpp>
3
4 int main(int argc, char *argv[]) {
5 const long samples = 1000000l; // total number of points in square
6 trng::yarn2 rx, ry; // random number engines for x− and y−coordinates
7 MPI::Init(argc, argv); // ini t ia l ize MPI environment
8 int size = MPI::COMM_WORLD.Get_size(); // get total number of processes
9 int rank = MPI::COMM_WORLD.Get_rank(); // get rank of current process

10 // spl i t PRN sequences by leapfrog method
11 rx.split(2, 0); // choose sub−stream no. 0 out of 2 streams
12 ry.split(2, 1); // choose sub−stream no. 1 out of 2 streams
13 rx.split(size, rank); // choose sub−stream no. rank out of size streams
14 ry.split(size, rank); // choose sub−stream no. rank out of size streams
15 long in = 0l; // number of points in circ le
16 trng::uniform01_dist<> u; // random number distribution
17 // throw random points into square and distribute workload over a l l processes
18 for (long i = rank; i < samples; i += size) {
19 double x = u(rx), y = u(ry); // choose random x− and y−coordinates
20 if (x * x + y * y <= 1.0) // is point in circ le ?
21 ++in; // increase counter
22 }
23 // calculate sum of a l l local variables ’ in ’ and storre result in ’ in_all ’ on process 0
24 long in_all;
25 MPI::COMM_WORLD.Reduce(&in, &in_all, 1, MPI::LONG, MPI::SUM, 0);
26 if (rank == 0) // print result
27 std::cout << "pi = " << 4.0 * in_all / samples << std::endl;
28 MPI::Finalize(); // quit MPI
29 return EXIT_SUCCESS;
30 }

6.2.2 Leapfrog

Leapfrog is a convenient approach to derive p non overlapping streams of pseudo-random
numbers from a single base stream. As defined in section 3.1 each parallel random number
engine provides a split method for leapfrog. If split(p, s) is called, the internal parameters
of the random number engine are changed in such a way that future calls to operator() will
generate the sth sub-stream of p sub-streams. Sub-streams are numbered from 0 to p− 1.
Changing line 15 or line 17 in listing 6.3 or listing 6.4 respectively, which reads

r.jump(2*(rank*samples/size)); // jump ahead

into

r.split(size, rank); // choose sub−stream no. rank out of size streams

provides different statistically independent sub-streams of pseudo-random numbers to each
process.

But note, the pseudo-random numbers of the base stream are now utilized in a completely
different fashion. The sequential program and also the two on block splitting based programs
from section 6.2.1 determine the position of a point (its x- and y-coordinate) by two consecutive
pseudo-random numbers of the base sequence. After calling split(size, rank) consecutive

104

6 Examples

Listing 6.8: Parallel Monte Carlo calculation of π using leapfrog and OpenMP.
1 #include <trng/yarn2.hpp>
2 #include <trng/uniform01_dist.hpp>
3
4 int main() {
5 const long samples = 1000000l; // total number of points in square
6 long in = 0l; // no points in circ le
7 // distribute workload over a l l processes and make a global reduction
8 #pragma omp parallel reduction(+ : in) default(none)
9 {

10 trng::yarn2 rx, ry; // random number engines for x− and y−coordinates
11 int size = omp_get_num_threads(); // get total number of processes
12 int rank = omp_get_thread_num(); // get rank of current process
13 // spl i t PRN sequences by leapfrog method
14 rx.split(2, 0); // choose sub−stream no. 0 out of 2 streams
15 ry.split(2, 1); // choose sub−stream no. 1 out of 2 streams
16 rx.split(size, rank); // choose sub−stream no. rank out of size streams
17 ry.split(size, rank); // choose sub−stream no. rank out of size streams
18 trng::uniform01_dist<> u; // random number distribution
19 // throw random points into square
20 for (long i = rank; i < samples; i += size) {
21 double x = u(rx), y = u(ry); // choose random x− and y−coordinates
22 if (x * x + y * y <= 1.0) // is point in circ le ?
23 ++in; // increase thread−local counter
24 }
25 }
26 // print result
27 std::cout << "pi = " << 4.0 * in / samples << std::endl;
28 return EXIT_SUCCESS;
29 }

calls to operator() will return pseudo-random numbers that are no longer neighboring
numbers of the base sequence. In fact they have a distance of size with respect to the original
sequence of pseudo-random numbers. For that reason the proposed replacement of the call of
the jump method to a call to the split method will result in another value for the approximation
of π with another statistical error.

To prevent this issue, we use the fact that the leapfrog method can be applied several times
to a sequence of pseudo-random numbers by successive calls to split. Each time split is
invoked the sequence is split into further sub-sequences. In listing 6.7 and listing 6.8 it is
shown how this works. Both programs start with two random number engines of the same
kind.

trng::yarn2 rx, ry; // random number engines for x- and y-coordinates

Later all x- and y-coordinates will be determined exclusively by one of these random number
engines. But without any manipulations of the internal status via jump or split method,
both engines will return the same sequences of pseudo-random numbers. Therefore, if the
coordinates of each point are chosen by calling operator() of rx and ry once, all points will
lie on the diagonal of the square. For that reason the sequences are split by

rx.split(2, 0); // choose sub-stream no. 0 out of 2 streams
ry.split(2, 1); // choose sub-stream no. 1 out of 2 streams

105

6 Examples

into two non overlapping sequences. Now successive calls to operator() will return different
sequences of pseudo-random numbers and the points are uniformly distributed over the
square. But still each process consumes the same two sequences of random numbers. However,
this can be solved by calling the split method a second time.

rx.split(size, rank); // choose sub-stream no. rank out of size streams
ry.split(size, rank); // choose sub-stream no. rank out of size streams

6.2.3 Block splitting or leapfrog?

TRNG provides two powerful techniques for parallelizing streams of pseudo-random numbers,
namely block splitting and leapfrog. Which one to choose, depends highly on the structure of
your Monte Carlo algorithm and your needs.

In the simplest case, each process of a parallel Monte Carlo application with a fixed number
of processes p (that does not change at run time) has just to equipped with some source
of pseudo-random numbers and the only requirement on the p streams of pseudo-random
numbers is that they do not overlap with any stream of pseudo-random numbers on any other
process. In this case it is sufficient to use a single random number engine of the same type for
each of the p process. Different streams are deviated by the leapfrog method and calling the
split method of a pseudo-random number engine object after these random number engines
have been initialized with the same parameters and the same seed. Of course with this simple
minded approach the outcome of a Monte Carlo application (and the actual statistical errors)
will depend on the number of processes.

On the other hand it is often desirable to design a parallel Monte Carlo algorithm in such a
way that its outcome is independent of the number of processes. That means the Monte Carlo
algorithm plays fair, see also section 2.3. Usually this additional constraint can be fulfilled by
a creative combination of block splitting, leapfrog method and using more than one random
number engine per processor. The previous sections gave already some elementary examples,
how this can be achieved. But in general this can be quite intricate. Therefore we give some
general guidelines.

• Identify the inherently parallel parts of the Monte Carlo algorithm. Which steps of the
Monte Carlo algorithm cannot be parallelized?
• Break the parallelizable tasks into p (p number of processes) smaller sub-parts of approx-

imately equal size.
• Is the number of pseudo-random numbers consumed by a parallelizable task (before it

is divided into subparts) constant or does it change at runtime? If it is constant, break
up the sequence of a single pseudo-random number engine into sub-streams in such
a way that mimics the way in which the parallelizable task is split into independent
sub-problems. This can always be achieved by calling the split or the jump method of a
random number engine object.
• If the number of pseudo-random numbers consumed by a parallelizable task is not

constant, or cannot be determined a priori, e. g. because this number itself is a function
of the random number sequence, an upper bound for this number may be estimated.
With this number a Monte Carlo algorithm can often be parallelized as if the number of
consumed random numbers was fixed.

To make this advise somewhat more clear, we give a further example. Imagine the simulation
of a site percolation process [62] on a two-dimensional square lattice of size N = Nx × Ny. In

106

6 Examples

Listing 6.9: Sketch of a coarse-grained parallel Monte Carlo simulation of site percolation via MPI.
The program creates many realizations of lattices with randomly occupied sites. Each realization is
generated by a single process.

1 #include <cstdlib>
2 #include <trng/yarn2.hpp>
3 #include <trng/uniform01_dist.hpp>
4 #include "mpi.h"
5
6 const int number_of_realizations = 1000;
7 const int Nx = 250, Ny = 200; // grid size
8 const int number_of_PRNs_per_sweep = Nx * Ny;
9 int site[Nx][Ny]; // lat t i ce

10 const double P = 0.46; // occupation probability
11
12 int main(int argc, char *argv[]) {
13 MPI::Init(argc, argv); // ini t ia l ize MPI environment
14 int size = MPI::COMM_WORLD.Get_size(); // get total number of processes
15 int rank = MPI::COMM_WORLD.Get_rank(); // get rank of current process
16 trng::yarn2 R; // random number engine
17 trng::uniform01_dist u; // random number distribution
18 // skip random numbers that are consumed by other processes
19 R.jump(rank * number_of_PRNs_per_sweep);
20 for (int i = rank; i < number_of_realizations; i += size) {
21 // consume Nx ∗ Ny pseudo−random numbers
22 for (int x = 0; x < Nx; ++x)
23 for (int y = 0; y < Ny; ++y)
24 if (u(R) < P)
25 site[x][y] = 1; // site is occupied
26 else
27 site[x][y] = 0; // site is not occupied
28 // skip random numbers that are consumed by other processes
29 R.jump((size - 1) * number_of_PRNs_per_sweep);
30 // analyze la t t i ce
31 // . . . source omitted
32 }
33 MPI::Finalize(); // quit MPI
34 return EXIT_SUCCESS;
35 }

site percolation each site of the lattice is occupied with probability P independently of the other
sites and clusters of neighboring occupied sites are constructed afterward. Once these clusters
are known, one can answer for a particular realization of occupied sites a lot of questions that
arise in percolation theory. Is there a spanning cluster that connects the lower line of the grid
and its upper line? What is the size of the largest cluster? And so on. How can we parallelize
such a Monte Carlo simulation for site percolation?

The easiest way is not to parallelize at all. At least not the analysis of a single realization
of occupied sites itself. Usually one is not interested in the analysis of a single realization of
occupied sites by itself, but one wants to know statistical properties of site percolation (or
another problem) that arise after averaging over many, lets say M, realizations of systems of
the same kind. It is quite natural to spread the workload over p processors in such a way that
each process analyzes each pth lattice of the M lattices. If we number the processes by its

107

6 Examples

rank from 0 to p− 1 and the lattices form 0 to M− 1, each process starts with a lattice which
number equals the process’ rank. Thereafter each process can skip p− 1 lattices, because these
are handled by other processes, and continue with the next lattice. Of course each process
has not only to skip the work that is done by other processes, but also the pseudo-random
numbers that would be consumed by analyzing the skipped lattices. Listing 6.9 gives a sketch
of such a parallelized site percolation program.

Unfortunately it is not always possible to parallelize a Monte Carlo simulation in such a
coarse-grained fashion like in the last example. Sometimes (e. g. in the Swendson-Wang-cluster-
algorithm [63, 50]) the generation and the analysis of a single lattice has to be parallelized by
itself. For that reason we split the lattice into px × py sub-lattices in such a way that the number
of parallel processes p equals px × py and px ≈ py. Each process is responsible for one of the
sub-lattices and uses the same random number engine. This generic parallelization paradigm
is also known as domain decomposition.

To make the site percolation lattice generation independent of the number processes and thus
independent of the details of the lattice partition, some numbers within the stream of pseudo-
random numbers of the random number engine have to be skipped by the jump method. If we
determine the state (occupied or not occupied) of the sites in a row-major fashion, the jump
method has to be called, whenever a process has filled a row of its sub-lattice. Of course each
process has to skip a certain amount of pseudo-random numbers at the start of the simulation,
too.

Listing 6.10 shows the outline of a fine-grained parallel Monte Carlo simulation of site
percolation via MPI, where each single lattice generation is done in parallel via domain de-
composition. This program shows two noteworthy implementation details. First the program
uses a runtime generated Cartesian communicator rather than the standard communicator
MPI::COMM_WOLD as seen in the MPI examples so far. Such a communicator reflects the special
topology of the domain decomposition and eases its implementation significantly. The number
of sub-lattices in each dimension, px and py respectively, is determined by MPI::Compute_dims,
see [52, 4] for details. Its result (returned in the field dims) determines the topology of the
Cartesian communicator Comm. Another nice feature of the example code in listing 6.10 is
that it does not assume the number of sites in any dimension is a multiple of the number of
sub-lattices in this dimension. So the sizes of the sub-lattices can vary slightly from process to
process. The precise range of coordinates that each process is responsible for is calculated in
lines 24 and 25.

Skipping numbers in a pseudo-random number sequence via jump is not for free. Of course
it is so smart that it can jump ahead without actually generating the numbers that have to be
skipped. But the complexity of jump grows logarithmically in its argument. If the domain
decomposition is coarse-grained enough, the overhead introduced by skipping numbers via
jump can be neglected. But if the number of processes that generate a site percolation lattice
becomes larger and larger, at a certain point this overhead can no longer be ignored and it
starts to limit the speedup achievable by parallelization. Finding the right level of granularity
is a general problem in parallel computing. On one hand one wants to use a large number
of processes to attain a large speedup, on the other hand, the relative portion of the inherent
sequential part of a program and the overhead introduced by the parallelization grow with the
number of processes as well. This fact is also known as Amdahl’s law.

108

6 Examples

Listing 6.10: Sketch of a fine-grained parallel Monte Carlo simulation of site percolation via MPI.
The program creates many realizations of lattices with randomly occupied sites. Each realization is
generated by all processes together, workload is distributed by domain decomposition.

1 #include <cstdlib>
2 #include <new>
3 #include <trng/yarn2.hpp>
4 #include <trng/uniform01_dist.hpp>
5 #include "mpi.h"
6
7 const int number_of_realizations = 1000;
8 const int Nx = 250, Ny = 200; // grid size
9 const double P = 0.46; // occupation probability

10
11 int main(int argc, char *argv[]) {
12 MPI::Init(argc, argv); // ini t ia l ize MPI environment
13 int size = MPI::COMM_WORLD.Get_size(); // get total number of processes
14 // create a two−dimensional Cartesian communicator
15 int dims[2] = {0, 0}; // number of processes in each domension
16 int coords[2]; // coordinates of current process within the grid
17 bool periods[2] = {false, false}; // no periodic boundary conditions
18 // calculate a balanced grid partitioning such that size = dims[0]∗dims[1]
19 MPI::Compute_dims(size, 2, dims);
20 MPI::Cartcomm Comm = MPI::COMM_WORLD.Create_cart(2, dims, periods, true);
21 int rank = Comm.Get_rank(); // get rank of current process
22 Comm.Get_coords(rank, 2, coords); // get coordinates of current process
23 // determine section of current process
24 int x0 = coords[0] * Nx / dims[0], x1 = (coords[0] + 1) * Nx / dims[0], Nxl = x1 - x0,
25 y0 = coords[1] * Ny / dims[1], y1 = (coords[1] + 1) * Ny / dims[1], Nyl = y1 - y0;
26 int *site = new int[Nxl * Nyl]; // allocate memory to storre a sublattice
27 trng::yarn2 R; // random number engine
28 trng::uniform01_dist u; // random number distribution
29 // skip random numbers that are consumed by other processes
30 R.jump(Nx * y0 + x0);
31 for (int i = 0; i < number_of_realizations; ++i) {
32 // consume Nxl ∗ Nyl pseudo−random numbers
33 int *s = site;
34 for (int y = y0; y < y1; ++y) {
35 for (int x = x0; x < x1; ++x) {
36 if (u(R) < P)
37 *s = 1; // site is occupied
38 else
39 *s = 0; // site is not occupied
40 ++s;
41 }
42 // skip random numbers that are consumed by other processes
43 R.jump(Nx - Nxl);
44 }
45 // skip random numbers that are consumed by other processes
46 R.jump(Nx * (Ny - Nyl));
47 // analyze la t t i ce
48 // . . . source omitted
49 }
50 MPI::Finalize(); // quit MPI
51 return EXIT_SUCCESS;
52 }

109

6 Examples

6.3 Using TRNG with STL and Boost

Whenever large scale Monte Carlo applications are written, they will not base on TRNG solely,
but also on other libraries, e. g. the C++ Standard Template Library (STL) or Boost [6]. In this
section we show, how to use TRNG in combination with the STL, especially its containers and
algorithms and the bind facility of Boost1. We assume you are familiar with the concepts of the
C++ STL, otherwise we suggest to read [49].

Imagine a C++ array or an STL container like a vector or a list of integers that has to be
populated by random numbers with a given distribution. This can be achieved by a simple
loop.

trng::yarn2 R; // random number engine
trng::uniform_int_dist U(0, 100); // random number distribution
std::vector<long> v(10); // vector of long with 10 elements
for (std::vector<long>::iterator i(v.begin()), end(v.end()); i!=end; ++i)

*i=U(R); // generate a random number form distribution U by engine R

This loop looks innocent, but it is not. Its error-prone and it its not obvious what is actually
effected by the loop. The loop is error-prone because the programmer has to take care that the
type of the iterator i fits to the container. Things become much more handy, if STL algorithms
like std::generate are used.

The template function std::generate takes an iterator range and a function object that takes
no arguments as its arguments. The prototype of this function reads

namespace std {

template <class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last, Generator gen);

}

and it assigns the result of invoking gen to each element in the range [first, last). Random
number distributions as introduced in section 3.2 do not meet the requirements of std::
generate, because their overloaded call operator requires at least one argument, namely a
random number engine, see Table 3.2. For that reason we need a function adapter that makes
random number distributions compatible with std::generate. The following template class
binder_cl is such a function adapter.

std::cout << (*(i1++)) << ’\t ’;
std::cout << "\n\n";

}

int main() {
trng::yarn2 R;
trng::uniform_int_dist U(0, 100);
std::vector<long> v(10);

std::cout << "random number generation by cal l operator\n";
for (auto &val : v)

It holds a reference to a random number engine and a reference to a random number distribu-
tion respectively as private data members. Its call operator calls the call operator of the random

1The bind facility of Boost will be part of future versions of the STL.

110

6 Examples

number distribution with the random number engine as its argument. With this template class
an STL container v can be filled by

trng::yarn2 R; // random number engine
trng::uniform_int_dist U(0, 100); // random number distribution
std::vector<long> v(10); // vector of long with 10 elements
std::generate(v.begin(), v.end(), binder_cl<trng::uniform_int_dist, trng::yarn2>(U, R));

The statement

binder_cl<trng::uniform_int_dist, trng::yarn2>(U, R)

creates a temporary anonymous object of the class binder_cl<trng::uniform_int_
dist, trng::yarn2>, which is a instantiation of the template class binder_cl. Up to now
we have not gained very much. Now we can replace an explicit loop by a template function
std::generate, but the syntax is clumsy and as error-prone as the explicit loop, because the
types that specify the template class binder_cl have to be given explicitly. This is a common
obstacle of generic programming in C++ but this can be avoided by a further helper function
make_binder.

std::vector<long> w(12);
std::cout << "random number generation by std : : generate\n";
std::generate(w.begin(), w.end(), std::bind(U, std::ref(R)));
print_range(w.begin(), w.end());
std::cout << "random number generation by std : : generate\n";
std::generate(w.begin(), w.end(), std::bind(U, std::ref(R)));

With this little helper function, the line

std::generate(v.begin(), v.end(), binder_cl<trng::uniform_int_dist, trng::yarn2>(U, R));

can be simplified to

std::generate(v.begin(), v.end(), make_binder(U, R));

Adapting function objects to functions and algorithms is a common task in generic pro-
gramming. The C++ STL is equipped with some adapter functions like std::bind1st or
std::bind2nd, but they are of limited use and from time to time further adapter functions
have to be created, as shown in the preceding paragraphs. The bind facility of the Boost library
generalizes the STL function adapters and we do not have to write our own function adapters.
Here we can give only a glimpse of the bind facility, everyone how wants to explore the full
capabilities of boost::bind should read the Boost documentation.

The boost equivalent to

std::generate(v.begin(), v.end(), make_binder(U, R));

reads

std::generate(v.begin(), v.end(), boost::bind(U, boost::ref(R)));

In this example the function boost::bind returns a temporary function object whose call
operator requires no arguments. The function boost::ref assures that the temporary function
object holds a reference to the random number engine R, otherwise it would contain a copy of
R. Omitting boost::ref may have unexpected side effects, e. g. the loop

for (int i(0); i<10; ++i)
std::generate(v.begin(), v.end(), boost::bind(U, R));

111

6 Examples

would fill the vector v ten times with random numbers, each time with the same set of random
numbers. Because boost::bind generates at each call to std::generate a copy of the random
number engine R and this copy determines the random values in v, but not the random number
engine R itself. As a consequence of this copy process std::generate generates random
numbers by a random number engine that starts with the same internal state in each cycle of
the loop.

Listing 6.11 demonstrates all the techniques for binding function arguments that have been
discussed in this section. Additionally it shows that TRNG random number engine meet the
requirements of the STL function std::random_shuffle directly, no function adaption via
boost:bind is needed.

Listing 6.11: This demo program demonstrates the interplay of TRNG, the C++ STL and the bind
facility of Boost.

1 #include <cstdlib>
2 #include <iostream>
3 #include <vector>
4 #include <algorithm>
5 #include <functional>
6 #include <trng/yarn2.hpp>
7 #include <trng/uniform_int_dist.hpp>
8
9 // print an iterator range to stdout

10 template<typename iter>
11 void print_range(iter i1, iter i2) {
12 while (i1 != i2)
13 std::cout << (*(i1++)) << ’\t ’;
14 std::cout << "\n\n";
15 }
16
17 int main() {
18 trng::yarn2 R;
19 trng::uniform_int_dist U(0, 100);
20 std::vector<long> v(10);
21
22 std::cout << "random number generation by cal l operator\n";
23 for (auto &val : v)
24 val = U(R);
25 print_range(v.begin(), v.end());
26 std::vector<long> w(12);
27 std::cout << "random number generation by std : : generate\n";
28 std::generate(w.begin(), w.end(), std::bind(U, std::ref(R)));
29 print_range(w.begin(), w.end());
30 std::cout << "random number generation by std : : generate\n";
31 std::generate(w.begin(), w.end(), std::bind(U, std::ref(R)));
32 print_range(w.begin(), w.end());
33 std::cout << "same sequence as above , but in a random shuffled order\n";
34 std::shuffle(w.begin(), w.end(), R);
35 print_range(w.begin(), w.end());
36 return EXIT_SUCCESS;
37 }

112

6 Examples

6.4 Using TRNG with C++11

If TRNG is used with a C++ compiler2 that conforms the C++11 standard [21, 22] random
number engines and distributions from TRNG and the C++11 standard library may be mixed.
This meas, for example, random numbers may be generated by using a random number
distribution of the C++11 standard library and a TRNG random number engine, see listing 6.12.

There are some probability distributions that are implemented by TRNG random number
distribution classes as well as by random number distribution classes from the C++11 standard
library. However, there is a crucial difference between TRNG distributions and C++11 distri-
butions. TRNG distributions consume exactly one random number from a random number
engine to generated a random number from a desired distribution. With C++11 distributions
the number of consumed random numbers may be larger or may even vary. Thus, C++11
random number distributions should not be utilized in parallel Monte Carlo simulations.
In particular, it is not possible to write parallel Monte Carlo simulations that play fair, see
section 2.3.

Listing 6.12: TRNG random number generators and distributions may be mixed with C++11 random
number generators and distributions.
#include <iostream>
#include <random>
#include <trng/lcg64.hpp>
#include <trng/normal_dist.hpp>

int main() {
std::mt19937 R_cpp11;
trng::lcg64 R_trng;
std::normal_distribution<> N_cpp11;
trng::normal_dist<> N_trng(0, 1);
for (int i = 0; i < 10000; ++i) {
std::cout << N_cpp11(R_cpp11) << ’\t ’;
std::cout << N_cpp11(R_trng) << ’\t ’;
std::cout << N_trng(R_cpp11) << ’\t ’;
std::cout << N_trng(R_trng) << ’\n ’;

}
return EXIT_SUCCESS;

}

2Use option -std=c++0x for GNU C++ compiler version 4.7 or later to enable C++11 support.

113

7 Implementation details and efficiency

Random number engines trng::mrgn, trng::mrgns, trng::yarnn, and trng::yarnns utilize
LFSR sequences

ri = a1 · ri−1 + a2 · ri−2 + . . . + an · ri−n mod m (7.1)

over a prime field Fm. The modulus m may be any prime. But LFSR sequences over F2
have found much more proliferation in the random number generation business than LFSR
sequences over other prime fields. LFSR sequences over general prime fields have been
proposed in the literature [19, 30, 27] as PRNGs. But so far, they found less attention by
practitioners because it is not straight forward to implement LFSR sequences over Fm efficiently,
if m is a large prime, especially if m of the order of the largest in a single computer word
representable integer. For that reason, we present some implementation techniques.

We assume that all integer arithmetic is done in w-bit registers and m < 2w−1. Under this
condition addition of modulo m can be done without overflow problems. But multiplying
two (w− 1)-bit integers modulo m is not straightforward because the intermediate product
has 2(w − 1) significant bits and cannot be stored in a w-bit register. For the special case
ak <

√
m Schrage [60] showed how to calculate ak · ri−k mod m without overflow. Based

on this technique a portable implementation of LFSR sequences with coefficients ak <
√

m
is presented in [31]. For parallel PRNGs this methods do not apply because the leapfrog
method may yield coefficients that violate this condition. Knuth [27, section 3.2.1.1] proposed
a generalization of Schrage’s method for arbitrary positive factors less than m, but this method
requires up to twelve multiplications and divisions and is therefore not very efficient.

The only way to implement (2.9) without additional measures to circumvent overflow
problems is to restrict m to m < 2w/2. On machines with 32-bit registers, 16 random bits per
number is not enough for some applications. Fortunately today’s C compiler provide fast
64-bit-arithmetic even on 32-CPUs and genuine 64-CPUs become more and more common.
This allows us to increase m to 32.

7.1 Efficient modular reduction

Since the modulo operation in (2.9) is usually slower than other integer operations like addition,
multiplication, Boolean operations or shifting, it has a significant impact on the total perfor-
mance of PRNGs based on LFSR sequences. If the modulus is a Mersenne Prime m = 2e − 1,
however, the modulo operation can be done using only a few additions, Boolean operations
and shift operations [53].

A summand s = ak · ri−k in (2.9) will never exceed (m− 1)2 = (2e− 2)2 and for each positive
integer s ∈ [0, (2e − 1)2] there is a unique decomposition of s into

s = r · 2e + q with 0 ≤ q < 2e . (7.2)

114

7 Implementation details and efficiency

From this decomposition we conclude

s− r · 2e = q
s− r(2e − 1) = q + r

s mod (2e − 1) = q + r mod (2e − 1)

and r and q are bounded form above by

q < 2e and r ≤ b(2e − 2)2/2ec < 2e − 2

respectively, and therefore
q + r < 2e + 2e − 2 = 2m .

So if m = 2e − 1 and s ≤ (m− 1)2, x = s mod m can be calculated solely by shift operations,
Boolean operations and addition, viz

x = (s mod 2e) + bs/2ec . (7.3)

If (7.3) yields a value x ≥ m we simply subtract m.
From a computational point of view Mersenne Prime moduli are optimal and we propose to

choose the modulus m = 231 − 1. This is the largest positive integer that can be represented
by a signed 32-bit integer variable, and it is also a Mersenne Prime. On the other hand our
theoretical considerations favor Sophie-Germain Prime moduli, for which (7.3) does not apply
directly. But one can generalize (7.3) to moduli 2e− k [41]. Again we start from a decomposition
of s into

s = r · 2e + q with 0 ≤ q < 2e , (7.4)

and conclude

s− r · 2e = q
s− r(2e − k) = q + kr

s mod (2e − k) = q + kr mod (2e − k) .

The sum s′ = q + kr exceeds the modulus at most by a factor k + 1, because by applying

q < 2e and r ≤ b(2e − k− 1)2/2ec < 2e − k− 1

we get the bound
q + kr < 2e + k(2e − k− 1) = (k + 1)m .

In addition by the decomposition of s′ = q + kr

s′ = r′ · 2e + q′ with 0 ≤ q′ < 2e ,

it follows
s mod (2e − k) = s′ mod (2e − k) = q′ + kr′ mod (2e − k) ,

and this time the bounds

q′ < 2e and r′ ≤ b(k + 1)(2e − k)/2ec < k + 1

115

7 Implementation details and efficiency

and
q′ + kr′ < 2e + k(k + 1) = m + k(k + 2) .

hold. Therefore if m = 2e − k, s ≤ (m− k)2 and k(k + 2) ≤ m, x = s mod m can be calculated
solely by shift operations, Boolean operations and addition, viz

s′ = (s mod 2e) + kbs/2ec
x = (s′ mod 2e) + kbs′/2ec .

(7.5)

If (7.5) yields a value x ≥ m, a single subtraction of m will complete the modular reduction. To
carry out (7.5) twice as many operations as for (7.3) are needed. But (7.5) applies for all moduli
m = 2e − k with k(k + 2) ≤ m.

7.2 Fast delinearization

YARN generators hide linear structures of LFSR sequences qi by raising a generating element
g to the power gqi mod m. This can be done efficiently by binary exponentiation, which takes
O (log m) steps. But considering LFSR sequences with only a few feedback taps (n ≤ 6) and
m ≈ 231 even fast exponentiation is significantly more expensive than a single iteration of (2.9).
Therefore we propose to implement exponentiation by table look up. If m is a 2e′-bit number
we apply the decomposition

qi = qi,1 · 2e′ + qi,0 with

qi,1 = bqi/2e′c , qi,0 = qi mod 2e′
(7.6)

and use the identity

ri = gqi mod m = (g2e′
)qi,1 · gqi,0 mod m (7.7)

to calculate gqi mod m by two table look-ups and one multiplication modulo m. If m < 231 the
tables for (g2e′

)qi,1 mod m and gqi,0 mod m have 216 and 215 entries respectively and fit easily
into the cache of modern CPUs.

7.3 Performance

By TRNG we provide an optimized PRNG library. The implementation uses 64-bit-arithmetic,
fast modular reduction (7.3) and (7.5) and exponentiation by table look-up (7.7) to implement
PRNGs based on LFSR sequences over prime fields, with Mersenne or Sophie-Germain Prime
modulus. PRNGs of TRNG are able to compete with other sequential PRNGs in terms of speed
and statistical properties but do support block splitting and leapfrog, too. Table 7.1 shows
some benchmark results. For this benchmark 226 PRNs were generated and the execution
time was measured to compute how many PRNs each PRNG is able to generate per second.
Apparently the performance of the PRNGs of TRNG compete quite well with popular PRNGs
like the Mersenne Twister (boost::mt19937 and mt19937) , lagged Fibonacci generators (LFSR
sequences over F2) or RANLUX that can be found in the Boost library [6].

116

7 Implementation details and efficiency

Table 7.1: Performance of various random number engines from TRNG and Boost. Test program
was compiled and executed on a Intel XEON 2.33 GHz in 64-bit mode using an Intel C++ compiler
version 10.0 and the option -O3.

generator PRNs per second

TRNG
trng::lcg64 291 · 106

trng::lcg64_shift 253 · 106

trng::mrg2 127 · 106

trng::mrg3 86 · 106

trng::mrg3s 72 · 106

trng::mrg4 74 · 106

trng::mrg5 81 · 106

trng::mrg5s 61 · 106

trng::yarn2 65 · 106

trng::yarn3 57 · 106

trng::yarn3s 45 · 106

trng::yarn4 53 · 106

trng::yarn5 62 · 106

trng::yarn5s 40 · 106

trng::lagfib2xor_19937_ull 264 · 106

trng::lagfib4xor_19937_ull 257 · 106

trng::lagfib2plus_19937_ull 254 · 106

trng::lagfib4plus_19937_ull 264 · 106

Boost
boost::minstd_rand 73 · 106

boost::ecuyer1988 55 · 106

boost::kreutzer1986 105 · 106

boost::hellekalek1995 5 · 106

boost::mt11213b 151 · 106

boost::mt19937 139 · 106

boost::lagged_fibonacci607 260 · 106

boost::lagged_fibonacci1279 204 · 106

boost::lagged_fibonacci2281 202 · 106

boost::lagged_fibonacci3217 308 · 106

boost::lagged_fibonacci4423 114 · 106

boost::lagged_fibonacci9689 113 · 106

boost::lagged_fibonacci19937 114 · 106

boost::lagged_fibonacci23209 116 · 106

boost::lagged_fibonacci44497 111 · 106

117

8 Quality

Sequences of PRNs are sequences of deterministic numbers that try to mimic true random
numbers and, one may wonder, how close sequences produced by TRNG can come to se-
quences of real random numbers? This question can be answered (at least partly) by statistical
tests. One can apply a battery of tests on a generator, and the more tests a generator can pass,
the better its quality. One distinguishes empirical and theoretical test procedures.

Empirical tests take a finite sequence of PRNs and compute certain statistics, e. g. chi-square
or Kolmogorov-Smirnov statistics, to judge the generator as “random” or not. The test statistic
is a random variate with a probability distribution that can be calculated under the assumption
that the test statistic is a function of true random numbers. This probability distribution is
used to judge a finite sequence of PRNs as possibly random or non-random. For example in an
actual test we may find a value of the test statistic that is so large (or small) that such a value or
a larger (or smaller) value can be found by chance for true random numbers with a probability
of 5 % only. In this case we assume the PRNG has failed the test and its sequence of PRNs
behaves non-random. But note, we may be wrong, there is a 5 % probability that we have just
seen normal statistical deviations. Therefore a statistical test should be applied several times.
If the PRNG fails more often than it can be explained by normal statistical deviations, it has a
serious flaw and should be rejected as non-random.

While empirical tests focus only on the statistical properties of a finite stream of PRNs and
ignore all the details of the underlying PRNG algorithm, theoretical tests analyze the PRNG
algorithm itself by number-theoretic methods and establish a priori characteristics of the PRN
sequence. These a priori characteristics may be used to choose good parameter sets for a certain
class of PRNGs, e. g. the coefficients of the LFSR sequences in the random number engines
trng::mrgn and trng::yarnn (see section 4.1) have been found by an extensive computer
search [31] and give good results in the spectral test [27], the most important theoretical test
for this class of generators.

On one hand the more kinds of statistical test procedures a PRNG masters, the more we will
trust its statistical properties. On the other hand statistical test can never prove that an finite
sequence of numbers is “random” or not. Knuth writes in [27]:

“In practice, we apply about half a dozen different kinds of statistical tests on a
sequence, and if is passes them satisfactorily we consider it to be random—it is
then presumed innocent until proven guilty.”

All PRNGs of TRNG and sub-streams of them have been subject to different statistical tests
as presented below. Empirical tests of the PRNGs of TNRG by other researchers have been
carried out in [2] and [42]. In respect of these tests the generator you find in TRNG are
comparable to other well-known high quality generators like the Mersenne twister generator
[43]. The tables 8.1 to 8.14 present results of various statistical tests of streams of pseudo-
random numbers that are generated by PRNGs of TRNG with default parameters and no
leapfrog splitting. Each test was applied eight times and the tables 8.1 to 8.14 show how
often each test has been failed. Note, at a confidence level of 0.1 or 0.9 even a perfect random

118

8 Quality

Table 8.1: Test results for random number engine trng::lcg64.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 4 of 8 failed 2 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 5 of 8 failed 3 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Random-Walk Test 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 3 of 8 failed 3 of 8 failed 3 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed

number generator will “fail” these tests on average in one of ten cases. All statistical tests
are implemented by the Random Number Generator Test Suite (RNGTS) [57]1. A detailed
descriptions of the statistical tests can be found on the RNGTS web site or in [27].

1We had to apply some minor modifications to RNGTS in order to adapt this test suite to TRNG.

119

8 Quality

Table 8.2: Test results for random number engine trng::mrg2.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 3 of 8 failed 3 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
n-Block-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 1 of 8 failed 3 of 8 failed 3 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 4 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 2 of 8 failed 4 of 8 failed 3 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed

Table 8.3: Test results for random number engine trng::mrg3.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 1 of 8 failed 5 of 8 failed 3 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 3 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Squeeze-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 3 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed

120

8 Quality

Table 8.4: Test results for random number engine trng::mrg3s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 1 of 8 failed 3 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 2 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Poker-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Squeeze-Test 1 of 8 failed 1 of 8 failed 3 of 8 failed 3 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 2 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed

Table 8.5: Test results for random number engine trng::mrg4.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 1 of 8 failed 4 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 0 of 8 failed
Permutation-Test 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 1 of 8 failed
Serial correlation Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 1 of 8 failed 1 of 8 failed 3 of 8 failed 3 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 3 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Birthday-Spacing-Test 3 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 3 of 8 failed 1 of 8 failed 1 of 8 failed

121

8 Quality

Table 8.6: Test results for random number engine trng::mrg5.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 2 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Poker-Test 1 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 2 of 8 failed 2 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed

Table 8.7: Test results for random number engine trng::mrg5s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 2 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Gap-Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
n-Block-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
Permutation-Test 0 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 4 of 8 failed 4 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Craps-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed

122

8 Quality

Table 8.8: Test results for random number engine trng::yarn2.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Gap-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 2 of 8 failed 2 of 8 failed 1 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed

Table 8.9: Test results for random number engine trng::yarn3.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 3 of 8 failed 2 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 3 of 8 failed 2 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 3 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 2 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed

123

8 Quality

Table 8.10: Test results for random number engine trng::yarn3s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 1 of 8 failed 4 of 8 failed 1 of 8 failed 0 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 1 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Poker-Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 5 of 8 failed 3 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Serial Test 2 of 8 failed 4 of 8 failed 0 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 2 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 1 of 8 failed

Table 8.11: Test results for random number engine trng::yarn4.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 1 of 8 failed
Maximum-of-t Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Squeeze-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed

124

8 Quality

Table 8.12: Test results for random number engine trng::yarn5.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 1 of 8 failed
n-Block-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 4 of 8 failed 3 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Squeeze-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed

Table 8.13: Test results for random number engine trng::yarn5s.

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Gap-Test 0 of 8 failed 0 of 8 failed 3 of 8 failed 2 of 8 failed
n-Block-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 1 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 1 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Poker-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 2 of 8 failed
Serial correlation Test 1 of 8 failed 3 of 8 failed 1 of 8 failed 0 of 8 failed
Random-Walk Test 0 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 0 of 8 failed 1 of 8 failed 0 of 8 failed
Collision-Test (Hash-Test) 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Squeeze-Test 1 of 8 failed 1 of 8 failed 4 of 8 failed 2 of 8 failed
Birthday-Spacing-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Binary-Rank Test (K-S) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Minimum-Distance Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed

125

8 Quality

Table 8.14: Test results for random number engine boost::mt19937 (Mersenne Twister generator).

confidence level
test 0.05 0.1 0.9 0.95

KS-Uniformity-Test 2 of 8 failed 2 of 8 failed 3 of 8 failed 2 of 8 failed
Chi-Square-Uniformity-Test 1 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Gap-Test 1 of 8 failed 2 of 8 failed 2 of 8 failed 0 of 8 failed
n-Block-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Ising-Model-Test (energy) 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Ising-Model-Test (specific heat) 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
CouponCollector-Test 0 of 8 failed 1 of 8 failed 2 of 8 failed 2 of 8 failed
Permutation-Test 0 of 8 failed 0 of 8 failed 0 of 8 failed 0 of 8 failed
Poker-Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Maximum-of-t Test 1 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Serial correlation Test 0 of 8 failed 0 of 8 failed 2 of 8 failed 1 of 8 failed
Random-Walk Test 1 of 8 failed 1 of 8 failed 0 of 8 failed 0 of 8 failed
Serial Test 0 of 8 failed 1 of 8 failed 1 of 8 failed 1 of 8 failed
Collision-Test (Hash-Test) 4 of 8 failed 5 of 8 failed 4 of 8 failed 3 of 8 failed
Squeeze-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 0 of 8 failed
Birthday-Spacing-Test 2 of 8 failed 2 of 8 failed 1 of 8 failed 1 of 8 failed
Binary-Rank Test (K-S) 1 of 8 failed 1 of 8 failed 2 of 8 failed 1 of 8 failed
Minimum-Distance Test 0 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed
Craps-Test 0 of 8 failed 2 of 8 failed 0 of 8 failed 0 of 8 failed

126

9 Frequently asked questions

What license or licenses are you using for TRNG? TRNG is free software. Starting from ver-
sion 4.9, the TRNG library is distributed under the terms of a BSD style license (3-clause
license). Earlier TRNG versions are distributed under the GNU Public License (GPL)
Version 2. See also page 129.

Why is the library called TRNG? Who is Tina? Tina is the name of a Linux cluster at the Insti-
tute of Theoretical Physics at the University Magdeburg in Germany. TRNG was written
to carry out Monte Carlo simulations on this parallel computer. The name Tina is a self
referring acronym for “Tina is no acronym”. The abbreviation TRNG stands for “Tina’s
Random Number Generator Library”. But sometimes it is used in the literature for “true
random number generator” as well, which is a technical device that generates random
numbers by a physical process (e. g. radioactive decay or noise in a electric circuit).

I am confused, there are so many different PRNGs in TRNG. Which one is the best? There
is nothing like the best PRNG. If a generator behaves as a good source of randomness
or not can depend on your Monte Carlo application, and there are trade-offs between
speed and quality. In general, it is a good idea to test if the outcome of a Monte Carlo
simulation is independent of the underlying PRNG. Therefore TRNG offers so many of
them.

But generally speaking, YARN generators are a good choice (see section 4.1.3). If the
PRNG is the bottleneck of your Monte Carlo simulation you might try the linear con-
gruential generator (see section 4.1.1) or in the case of a sequential simulation a lagged
Fibonacci generator with four feedback taps (see section 4.1.4).

Why is TRNG written in C++? C++ provides a lot of advanced features as inline functions
and static polymorphism via templates. These language features give us the power
to implement a fast, portable and easy to use library of PRNGs. Other languages (as
FORTRAN or C) do no offer these (or comparable) features, are significantly slower (as
Java or scripting languages), or are supported by fewer platforms (as C#).

How can I use TRNG in my FORTRAN programs? Unfortunately this is not possible. TRNG
makes heavy use of special C++ language features as classes, inline functions, and tem-
plates. All theses concepts have no counterpart in the FORTRAN programming language.
Large parts of TRNG even do not reside in the library that you link with -ltrng4 to
your object code. Template functions and inline functions are defined exclusively in the
header files.

How can I use TRNG in my C programs? Unfortunately this is not possible. Here the same
statements apply as for the last question. However, it is much more easy to port a
C program to C++ than porting a FORTRAN program to C++. Just comply with the
following recipe.

127

9 Frequently asked questions

• Rename header files foo.h of the C standard library into cfoo but let other header
files untouched, i. e., change

#include <stdio.h>
#include <math.h>
#include <unistd.h>

into

#include <cstdio>
#include <cmath>
#include <unistd.h>

Note, unistd.h is not part of the C standard library.
• Insert the line

using namespace std;

after the include directives of each source file.
• Do not use C++ function names that are C++ keywords, i. e., class, new, public or
private.

This recipe will give you an ugly but valid C++ program, at least in the most cases. This
modified “C” program has to be compiled by a C++ compiler now, but it is ready to
benefit from the TRNG library.

How can I give feedback, report bugs, or make a feature request? Send bug reports and fea-
ture requests to the author of TRNG via e-mail to trng@mail.de or open an issue on
Github [64].

I used TRNG in my research and want to give credit. How should I cite TRNG? The main
concepts, which TRNG builds on, are published in Heiko Bauke and Stephan Mertens.
Random numbers for large-scale distributed Monte Carlo simulations. Physical Review E,
75(6):066701, 2007. Please cite this publication.

128

License

Starting from version 4.9, the TRNG library is distributed under the terms of a BSD style
license (3-clause license). Earlier TRNG versions are distributed under the GNU Public License
(GPL) Version 2. The BSD license is a much more liberal license than the GPL but it is a GPL
compatible license. Thus, TRNG 4.9 and later versions may be used in GPL software projects.

Copyright (c) 2000-2019, Heiko Bauke
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

129

Bibliography

[1] NVIDIA CUDA C Programming Guide, 2010.

[2] L. Yu. Barash and L. N. Shchur. PRAND: GPU accelerated parallel random number
generation library: Using most reliable algorithms and applying rallelism of modern
GPUs and CPUs. Computer Physics Communications, 185(4):1343–1353, 2014.

[3] Heiko Bauke and Stephan Mertens. Pseudo random coins show more heads than tails.
Journal of Statistical Physics, 114(3):1149–1169, 2004.

[4] Heiko Bauke and Stephan Mertens. Cluster Computing. Springer, 2005.

[5] Heiko Bauke and Stephan Mertens. Random numbers for large-scale distributed Monte
Carlo simulations. Physical Review E, 75(6):066701, 2007.

[6] Boost C++ libraries. http://www.boost.org.

[7] Walter E. Brown, Mark Fischler, Jim Kowalkowski, and Marc Paterno. Random Number
Generation in C++0X: A Comprehensive Proposal, version 2, 2006. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2006/n2032.pdf.

[8] CMake documenation. https://cmake.org/documentation/.

[9] CMake projects in Visual Studio. https://docs.microsoft.com/en-us/cpp/build/
cmake-projects-in-visual-studio.

[10] Aaldert Compagner. Definitions of randomness. American Journal of Physics, 59(8):700–705,
August 1991.

[11] Aaldert Compagner. The hierarchy of correlations in random binary sequences. Journal of
Statistical Physics, 63:883–896, 1991.

[12] Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

[13] Jürgen Eichenauer-Herrmann and Holger Grothe. A remark on long-range correlations in
multiplicative congruential pseudo random number generators. Numerische Mathematik,
56(6):609–611, 1989.

[14] Alan M. Ferrenberg and D. P. Landau. Monte carlo simulations: Hidden errors from
“good” random number generators. Physical Review Letters, 69(23):3382–3384, 1992.

[15] Jay Fillmore and Morris Marx. Linear recursive sequences. SIAM Review, 10(3):342–353,
1968.

[16] George Fishman. Monte Carlo. Springer, 1996.

130

http://www.boost.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2032.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2032.pdf
https://cmake.org/documentation/
https://docs.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio
https://docs.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio

Bibliography

[17] S. W. Golomb. Shift Register Sequences. Aegan Park Press, Laguna Hills, CA, revised
edition, 1982.

[18] Peter Grassberger. On correlations in “good” random number generators. Physics Letters
A, 181(1):43–46, 1993.

[19] A. Grube. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Zeitschrift für angewandte
Mathematik und Mechanik, 53:T223–T225, 1973.

[20] Intel Threading Building Blocks. http://www.threadingbuildingblocks.org.

[21] ISO. ISO/IEC 14882:2011 Information technology – Programming languages – C++. ISO.

[22] Nicolai M. Josuttis. The C++ Standard Library. Addison Wesley, 2nd edition, 2012.

[23] Dieter Jungnickel. Finite Fields: Structure and Arithmetics. Bibliographisches Institut, 1993.

[24] David Kirk and Wen mei Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann, 2010.

[25] Scott Kirkpatrick and Erich P. Stoll. A very fast shift-register sequence random number
generator. Journal of Computational Physics, 40(2):517–526, 1981.

[26] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms.
Addison Wesley Professional, 1st edition, 1969.

[27] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms.
Addison Wesley Professional, 3rd edition, 1998.

[28] Werner Krauth. Statistical Mechanics: Algorithms and Computations. Oxford Master Series
in Statistical, Computational, and Theoretical Physics. Oxford University Press, 2006.

[29] David P. Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statistical Physics.
Cambridge University Press, 2nd edition, 2005.

[30] Pierre L’Ecuyer. Random numbers for simulation. Communications of the ACM, 33(10):85–
97, 1990.

[31] Pierre L’Ecuyer. A search for good multiple recursive random number generators. ACM
Transactions on Modeling and Computer Simulation, 3(2):87–98, 1993.

[32] Pierre L’Ecuyer. Tables of linear congruential generators of different sizes and good lattice
structure. Mathematics of Computation, 68:249–260, 1999.

[33] Pierre L’Ecuyer. Software for uniform random number generation: Distinguishing the
good and the bad. In Proceedings of the 2001 Winter Simulation Conference, pages 95–105.
IEEE, IEEE Press, 2001.

[34] Pierre L’Ecuyer. Random number generation. In James E. Gentle, Wolfgang Härdle, and
Yuichi Mori, editors, Handbook of Computational Statistics. Springer, 2004.

[35] Pierre L’Ecuyer and Peter Hellekalek. Random number generators: Selection criteria and
testing. In Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statistics,
pages 223–266. Springer, 1998.

131

http://www.threadingbuildingblocks.org

Bibliography

[36] D. H. Lehmer. Mathematical methods in large-scale computing units. In Proc. 2nd Sympos.
on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949, pages 141–146. Harvard
University Press, 1951.

[37] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, 2nd edition, 1994.

[38] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2nd edition, 1997.

[39] George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National
Academy of Sciences, 61:25–28, 1968.

[40] Michael Mascagni. Parallel linear congruential generators with prime moduli. Prallel
Computing, 24(5–6):923–936, 1998.

[41] Michael Mascagni and Hongmei Chi. Parallel linear congruential generators with Sophie-
Germain moduli. Parallel Computing, 30(11):1217–1231, 2004.

[42] Michael Mascagni and Lin-Yee Hin. Parallel random number generators in
monte carlo derivative pricing: An application-based test. Monte Carlo Methods and
Applications, 18(2):161–179, Jan 2012.

[43] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30, 1998.

[44] A. De Matteis and S. Pagnutti. A class of parallel random number generators. Parallel
Computing, 13(2):193–198, 1990.

[45] A. De Matteis and S. Pagnutti. Long-range correlations in linear and non-linear random
number generators. Parallel Computing, 14(2):207–210, 1990.

[46] Don L. McLeish. Monte Carlo Simulation and Finance. John Wiley & Sons, 2005.

[47] Stephan Mertens and Heiko Bauke. Entropy of pseudo-random-number generators.
Physical Review E, 69:055702–1–055702–4, 2004.

[48] MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich.

[49] David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison-Wesley Professional, 2001.

[50] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford
University Press, 1999.

[51] Open MPI. http://www.open-mpi.org.

[52] Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers Inc, 1996.

[53] W. H. Payne, J. R. Rabung, and T. P. Bogyo. Coding the lehmer pseudo-random number
generator. Communications of the ACM, 12(2):85–86, 1969.

132

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.open-mpi.org

Bibliography

[54] Ora E. Percus and Malvin H. Kalos. Random number generators for MIMD parallel
processors. Journal of Parallel and Distributed Computing, 6:477–497, 1989.

[55] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes. Cambridge University Press, third edition, 2007.

[56] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2003.

[57] Random number generator test suite. http://www.comp-phys.org:16080/rngts/.

[58] James Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[59] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Texts in
Statistics. Springer, 2004.

[60] Linus Schrage. A more portable fortran random number generator. ACM Transactions on
Mathematical Software, 5(2):132–138, 1979.

[61] L. N. Shchur, J. R. Heringa, and H. W. J. Blöte. Simulation of a directed random-walk
model the effect of pseudo-random-number correlations. Physica A, 241(3–4):579–592,
1997.

[62] Dietrich Stauffer and Ammon Aharony. Introduction to Percolation Theory. Taylor & Francis
Ltd, 2nd edition, 1994.

[63] Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte
carlo simulations. Physical Review Letters, 58:86–88, 1987.

[64] Tina’s Random Number Generator Library. https://www.numbercrunch.de/trng/,
https://github.com/rabauke/trng4/.

[65] Zhe-Xian Wan. Lectures on Finite Fields and Galois Rings. World Scientific, 2003.

[66] Neal Zierler. Linear recurring sequences. J. Soc. Indust. Appl. Math., 7(1):31–48, 1959.

[67] Robert M. Ziff. Four-tap shift-register-sequence random-number generators. Computers
in Physics, 12(4), 1998.

133

http://www.comp-phys.org:16080/rngts/
https://www.numbercrunch.de/trng/
https://github.com/rabauke/trng4/

Index

Bernoulli distribution, 80
B-distribution, 74
binomial distribution, 82
block splitting, 8, 100, 106
Breit-Wigner distribution, 61

C++11, 3, 113
Cauchy distribution, 61
χ2-distribution, 75
CUDA, 93

delinearization, 15
discrete distribution, 91

exponential distribution, 51
extreme value distribution, 71

Fisher-Snedecor distribution, 78

Γ-distribution, 72
gamma–Poisson (mixture) distribution, 84
Gaussian distribution, 54
geometric distribution, 87
Gumbel distribution, 71

hypergeometric distribution, 85

lagged Fibonacci generators, 41
leapfrog, 8, 104, 106
linear complexity, 16
linear congruential generators, 24
linear feedback shift register sequences, 11
linear recurrences, 10
logistic distribution, 62
lognormal distribution, 63
Lorentz distribution, 61

Maxwell distribution, 59
Mersenne twister generators, 46
multiple recursive generators, 28

negative binomial distribution, 84

normal distribution, 54

parallelization, 7
parameterization, 8
Pareto distribution, 65
play fair, 9
Poisson distribution, 88
power-law distribution, 66
pseudo-noise sequence, 12
pseudo-random numbers, 7

random seesding, 8
Rayleigh distribution, 79

χ2-distribution, 78
Student-t distribution, 76

tent distribution, 68
truncated normal distribution, 58
two-sided exponential distribution, 53

uniform distribution, 48

Weibull distribution, 69

YARN generators, 34
yarn sequences, 15

zero-truncated Poisson distribution, 89

134

	Contents
	TRNG in a nutshell
	Introduction
	History

	Pseudo-random numbers for parallel Monte Carlo simulations
	Pseudo-random numbers
	General parallelization techniques for PRNGs
	Playing fair
	Linear recurrences
	Linear congruential generators
	Linear feedback shift register sequences

	Non-linear transformations and YARN sequences

	Basic concepts
	Random number engines
	Random number distributions

	TRNG classes
	Random number engines
	Linear congruential generators
	Multiple recursive generators
	YARN generators
	Lagged Fibonacci generators
	Mersenne twister generators

	Random number distributions
	Uniform distributions
	Exponential distribution
	Two-sided exponential distribution
	Normal distributions
	Truncated normal distribution
	Maxwell distribution
	Cauchy distribution
	Logistic distribution
	Lognormal distribution
	Pareto distribution
	Power-law distribution
	Tent distribution
	Weibull distribution
	Extreme value distribution
	Gamma-distribution
	Beta-distribution
	chi²-distribution
	Student-t distribution
	Snedecor-F distribution
	Rayleigh distribution
	Bernoulli distribution
	Binomial distribution
	Negative binomial distribution
	Hypergeometric distribution
	Geometric distribution
	Poisson distribution
	Zero-truncated Poisson distribution
	Discrete distribution

	Function template generatecanonical
	CUDA support

	Installation
	Examples
	Hello world!
	Hello parallel world!
	Block splitting
	Leapfrog
	Block splitting or leapfrog?

	Using TRNG with STL and Boost
	Using TRNG with C++11

	Implementation details and efficiency
	Efficient modular reduction
	Fast delinearization
	Performance

	Quality
	Frequently asked questions
	License
	Bibliography
	Index

